Appendix C Answers to End-of-Chapter Problems

These answers to end-of-chapter problems are somewhat abbreviated and don't show all the mechanistic details. They do, however, cover the important points about each answer, leaving you to fill in the rest.

Chapter 1 Common Mechanisms in Biological Chemistry

- 1.1 (a), (c), (g), (h) can behave either as an acid or a base.
- 1.2 1-Butene is more nucleophilic.
- 1.3 (a) < (c) < (c) < (b) < (d)
- 1.4 (b) < (a) < (d) < (c)
- 1.5 The product of protonation on the double-bonded oxygen is stabilized by two resonance forms.

1.6 The product of protonation on the double-bonded nitrogen is stabilized by three resonance forms.

1.7

(a)
$$H_3C$$
 (b) ${}^{2}O_3POCH_2$ CH_3 (c) CH_3 CO_2 CO_2

1.8

(b)
$$O = R - C - SCOA$$
 $O = O = O = R - C - CHR'' - C - R'$ $O = C - C$

(c)
$$H_3C$$
 CO_2CH_3 H_3C CO_2CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

1.10

1.11

1.12

$$RCH_{2}-C-H \longrightarrow RCH_{2}-C-H \longrightarrow RCH_{2}CSR'$$

$$RCH_{2}-C-H \longrightarrow RCH_{2}CSR'$$

$$RCH_{2}-C-H \longrightarrow RCH_{2}CSR'$$

$$RCH_{2}-C-H \longrightarrow RCH_{2}CSR'$$

$$RCH_{2}-C-H \longrightarrow RCH_{2}CSR'$$

1.13

1.14

444

B:
$$H = A$$
 $A = H = A$
 $A = H$

1.15

1.16 Inversion of configuration implies an S_N^2 reaction.