

FIGURE 22.13 Approximate regions of chemical shifts for different types of protons in organic compounds.

TABLE 22.2 Characteristic ¹ H NMR chemical shifts in CDCl ₃		
Compound	Chemical shift (δ, ppm)	
TMS	0.0	
Alkanes (C-C-H)	0.8–1.9	
Amines (C-N-H)	0.6–4.5	
Alcohols (C-O- H)	0.5–5.0	
Alkenesa (C=C-C-H)	1.5–2.6	
Alkynes (C≡C− H)	1.7–3.1	
Carbonyl compounds (O=C-C-H)	1.9–3.3	
Halides (X–C– H)	2.1–4.5	
Aromatic compounds ^b (Ar—C— H)	2.2-3.0	
Alcohols, esters, ethers (O–C– H)	3.2-5.3	
Alkenes (C=C-H)	4.5–8.5	
Phenols (Ar–O– H)	4.0-8.0	
Amides (O=C-N-H)	5.5–9.5	
Aromatic compounds (Ar-H)	6.5–9.0	
Aldehydes (O=C-H)	9.5–10.5	
Carboxylic acids (O=C-O-H)	9.7–12.5	

a. Allylic protons.

Figures from Mohrig's *Techniques in Organic Chemistry*, 3rd Edition.

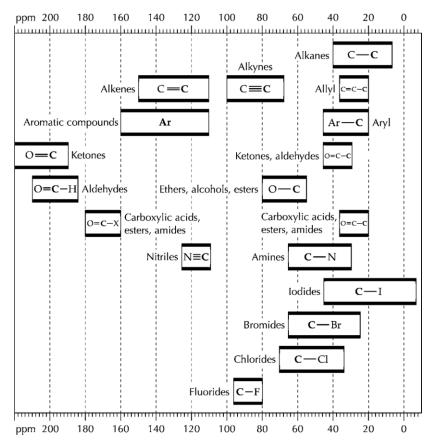
b. Benzylic protons.

TABLE 22.4 Additive parameters for predicting NMR chemical shifts of aromatic protons in CDCl₃

	Base value	7.36 ppm ^a	
Group	ortho	meta	para
—CH ₃	-0.18	-0.11	-0.21
$-CH(CH_3)_2$	-0.14	-0.08	-0.20
—CH₂Cl	0.02	-0.01	-0.04
—CH=CH ₂	0.04	-0.04	-0.12
—CH=CHAr	0.14	-0.02	-0.11
-CH=CHCO ₂ H	0.19	0.04	0.05
CH=CH(C=O)Ar	0.28	0.06	0.05
Group	ortho	meta	para
—Ar	0.23	0.07	-0.02
—(C=O)H	0.53	0.18	0.28
—(C=O)R	0.60	0.10	0.20
—(C=O)Ar	0.45	0.12	0.23
(C=O)CH=CHAr	0.67	0.14	0.21
$(C=O)OCH_3$	0.68	0.08	0.19
$-(C=O)OCH_2CH_3$	0.69	0.06	0.17
-(C=O)OH	0.77	0.11	0.25
(C=O)CI	0.76	0.16	0.33
$(C=O)NH_2$	0.46	0.09	0.17
—C≣N	0.29	0.12	0.25
— F	-0.32	-0.05	-0.25
—Cl	-0.02	-0.07	-0.13
—Br	0.13	-0.13	-0.08
—OH	-0.53	-0.14	-0.43
—OR	-0.45	-0.07	-0.41
—OAr	-0.36	-0.04	-0.28
O(C=O)R	-0.27	0.02	-0.13
O(C=O)Ar	-0.14	0.07	-0.09
$-NH_2$	-0.71	-0.22	-0.62
$N(CH_3)_2$	-0.68	-0.15	-0.73
NH(C=O)R	0.14	-0.07	-0.27
$-NO_2$	0.87	0.20	0.35

a. Base value is the measured chemical shift of benzene in CDCl₃ (1% solution).

TABLE 22.3 Additive parameters for predicting NMR chemical shifts of alkyl protons in CDCl₃^a


Methyl 0.9 ppm

Methylene 1.2 ppm Methine 1.5 ppm

	Metnine	1.5 ppm	
Group (Y)	Alpha (α) substituent	Beta (β) substituent	Gamma (γ) substituent
	H —C—Y	H —C—C—Y	H -C-C-C-Y
—R	0.0	0.0	0.0
—C=C	0.8	0.2	0.1
—C=C —C=C-Ar ^b —C=C(C=O)OR	0.9	0.1	0.0
C=C(C=O)OR	1.0	0.3	0.1
—C≡C−R	0.9	0.3	0.1
—C≡C−Ar	1.2	0.4	0.2
—Ar	1.4	0.4	0.1
—(C=O)OH	1.1	0.3	0.1
—(C=O)OR	1.1	0.3	0.1
(C=O)H	1.1	0.4	0.1
(C=O)R	1.2	0.3	0.0
—(C=O)Ar	1.7	0.3	0.1
$(C=O)NH_2$	1.0	0.3	0.1
—(C=O)Cl	1.8	0.4	0.1
—C≣N	1.1	0.4	0.2
—Br —Cl	2.1	0.7	0.2
—Cl	2.2	0.5	0.2
—OH	2.3	0.3	0.1
—OR	2.1	0.3	0.1
—OAr	2.8	0.5	0.3
O(C=O)R	2.8	0.5	0.1
O(C=O)Ar	3.1	0.5	0.2
$-NH_2$	1.5	0.2	0.1
NH(C=O)R	2.1	0.3	0.1
NH(C=O)Ar	2.3	0.4	0.1

a. There may be differences of 0.1-0.5 ppm in the chemical shift values calculated from this table and those measured from individual spectra.

b. Ar = aromatic group.

FIGURE 23.4 Approximate regions of ¹³C chemical shifts for different types of carbon atoms in organic compounds.

TABLE 23.1 Characteristic ¹³C NMR chemical shifts in CDCl₃

Compound	Chemical shift (ppm)
TMS	0.0
CDCl ₃ (t)	77
Alkane (C-CH ₃)	7–30
Alkane (C-CH ₂)	15-40
Alkane (C-CH) and (C-C)	15-40
Carboxylic acids, esters, and amides (C-C=O)	20–35
Allyl (C-C=C)	20-35
Arene (C –Ar)	20-45
Ketones, aldehydes (C-C=O)	30-45
Amines (C-N)	30-65
lodides (C-I)	- 5 - 45
Bromides (C -Br)	25-65
Chlorides (C-Cl)	35-70
Fluorides (C-F)	80–95
Alcohols (C-OH), ethers (C-OR), esters (C-O[C=O]R)	55-80
Alkyne (C ≡C)	70–100
Alkene (C= C)	110–150
Aromatic	110-160
Nitriles (C ≡N)	110-125
Carboxylic acids, esters, and amides (C=O)	160-180
Aldehydes (C=O)	185-210
Ketones (C-O)	190–220