CHEM 109, Lecture 13

Nucleic Acids \& Nucleotide Structure

- Heterocycles - Aromaticity \& Basicity
- H-Bonding

Heterocycles: Questions addressed in today's lecture:

- What is the hybridization of each N atom below?
- Which N lone pairs are involved in resonance?
- Which N atoms are basic?
- Are any N's more basic than others? Which ones?

caffeine

sildenafil

1. There must be a ring!
2. All atoms in ring are $\mathbf{s p}^{2}$ (conjugated/resonance)
3. Huckel Rule ($4 n+2$)

Basicity of N-Heterocycles

You do not need to memorize these pKa's or heterocyclic ring structures-names, but you should develop a general understanding of relative basicity, as determined by conjugate acid stability and other factors.

Pyrrole vs. pyrrolidine: Which is the stronger base and why?

Pyrrole pKa 17.5

Conjugate acid pKa 0.4

Pyrrolidine pKa 35ish

Conj. acid pKa 11.3

Pyridine vs. piperidine: Which is the stronger base and why?

Pyridine pKa n/a

conj. acid pKa 5.25

Piperidine pKa 35ish

Conj. acid pKa 11.2

Imidazole: Which N is basic and why?

Who's the base?

Pyrimidine

Purine

Nitrogen Basicity Flowchart

Use the examples on pages 1 and 2 to develop a set of criteria for \mathbf{N} to be basic and any trends about relative basicity.

Devise a series of questions you'd ask about a new N -containing molecule to determine whether each \mathbf{N} is basic and, if possible, rank those basic N's by basicity. Format these questions into flow chart format.

Unrelated flow chart Ex. "Do I feel comfortable in this dress?" -yes \rightarrow wear it!
I
\downarrow
Don't wear it

Apply your flow chart to each \mathbf{N} in these compounds. Which is the most basic N in each?

Fictional Molecule

Nucleobases

- Which H's are available to serve as H-bond donors?
- Which lone pair are available to serve as H -bond acceptors?

Adenine

Guanine

Cytosine

Thymine, $\mathbf{R}=\mathrm{CH}_{3}$ Uracil, R = H

Nucleoside $=($ Nucleobase + Ribose $)-\mathrm{H}_{2} \mathrm{O}$

$\underline{\text { Nucleotide }}=($ Nucleobase + Ribose + Phosphate $)-2 \mathrm{H}_{2} \mathrm{O}$

Hydrogen Bonding in DNA / RNA

- Many options for pairing; only one is naturally occurring per pair
- H-bond donor (has the H) $=\mathbf{d}$; H-bond acceptor (has the lone pair) $=\mathbf{a}$

G-C Base Pair

Guanine

A-T Base Pair

Adenine

Next time...nucleobase / DNA mutations, introduction to medicinal chemistry

