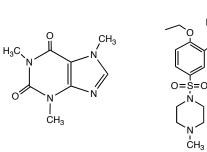
HN

sildenafil

CH₃


109, Binder CHEM 109, Lecture 13

Nucleic Acids & Nucleotide Structure

- Heterocycles Aromaticity & Basicity
- H-Bonding

Heterocycles: Questions addressed in today's lecture:

- What is the hybridization of each N atom below?
- Which N lone pairs are involved in resonance?
- Which N atoms are basic?
- Are any N's more basic than others? Which ones?

caffeine

Hybridization	sp³	sp²	sp
# charge clouds*	4	3	2

* Charge cloud = atom or lone pair around central atom; NOT the number of bon	ds!
Exception: lone pair next to positive charge or pi bond	

Molecular Geometry	Tetrahedral	Trigonal Planar	Linear
Bond Angles	109.5°	120°	180°
Atomic Orbitals	sp ³ carbon	sp^2 sp^2	$\frac{180^{\circ}}{\text{One } sp \text{ hybrid}}$
	sp ³ nitrogen	Top view	
e-config add arrows	sp ³	p	p sp

- 1. There must be a ring!
- 2. All atoms in ring are **sp**² (conjugated/resonance)
- 3. Huckel Rule (4n+2)

Basicity of N-Heterocycles

You do not need to memorize these pKa's or heterocyclic ring structures-names, but you should develop a general understanding of <u>relative basicity</u>, as determined by <u>conjugate acid stability</u> and other factors.

Pyrrole vs. pyrrolidine: Which is the stronger base and why?

Pyrrole

pKa 17.5

Conjugate acid

pKa 0.4

Pyrrolidine pKa 35ish

Conj. acid pKa 11.3

Pyridine vs. piperidine: Which is the stronger base and why?

Pyridine pKa n/a

pKa 35ish

Conj. acid pKa 11.2

Imidazole: Which *N* is basic and why?

N≶∕NH

lmidazole pKa 14.2

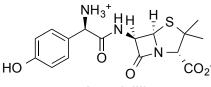
Conj. acid pKa 6.95

Who's the base?

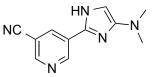
Pyrimidine

Purine

Nitrogen Basicity Flowchart

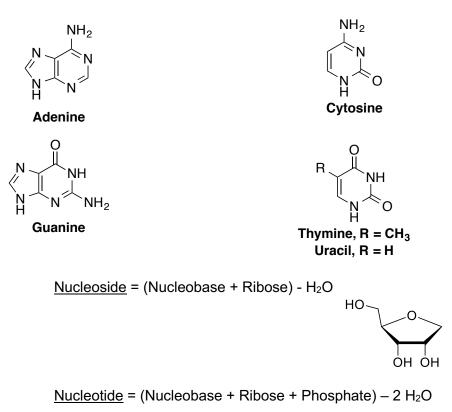

Use the examples on pages 1 and 2 to develop a set of **criteria for N to be basic** and any trends about **relative basicity**.

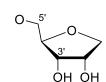
Devise a series of questions you'd ask about a new N-containing molecule to determine whether each N is basic and, if possible, rank those basic N's by basicity. Format these questions into <u>flow chart format</u>.


Unrelated flow chart Ex. "Do I feel comfortable in this dress?" –yes → wear it!

l No ↓ Don't wear it

Apply your flow chart to each N in these compounds. Which is the most basic N in each?

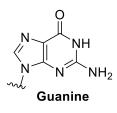

Amoxicillin

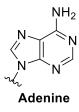


Fictional Molecule

Nucleobases

- Which H's are available to serve as H-bond donors?
- Which lone pair are available to serve as H-bond acceptors?




Hydrogen Bonding in DNA / RNA

- Many options for pairing; only one is naturally occurring per pair
- H-bond donor (has the H) = d; H-bond acceptor (has the lone pair) = a

G-C Base Pair

A-T Base Pair

