CHEM 109, Lecture 15

Medicinal Chemistry: Solubility Potential (Palleros – online)

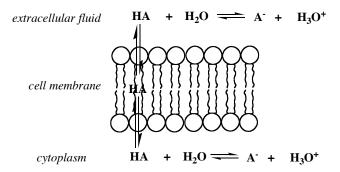
 β -Lactam Antibiotics

Solubility Potential

- Hydrocarbons are insoluble in water

- Adding polar functional groups increases water solubility

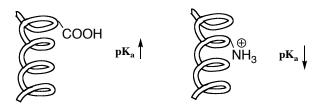
- The more functional groups, the more carbons the molecule can contain and still be soluble


Table 1. Solubility Potential

Functional Group	Solubility Potential
	(in a polyfunctional molecule)
Alcohol	3-4 carbons
Phenol	3-4 carbons
Amine	3 carbons
Carboxylic acid	3 carbons
Ester	3 carbons
Amide	2-3 carbons
Ether	2 carbons
Aldehyde	2 carbons
Ketone	2 carbons
Urea	2 carbons
Charged groups (N+: ammonium salts; O:	
carboxylates, phenolates, sulfates; N ⁻ :	20-30 carbons
sulfonamides)	

Calculate the solubility potential of morphine and its HCl salt.

Effects of pKa on Solubility and Binding


Pharmaceutical & Pharmacokinetic Phases

Pharmacodynamic Phase – binding of drug to receptor

Food for thought: how are pKa's effected if water is not the solvent??

Receptor

Hydrophobic pocket of peptide backbone effects pKa's (typically we think of pKa as dissociation in water, this is different!)

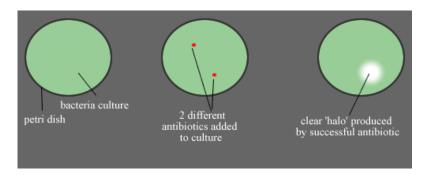
^{**}Ionization states dictate whether drug can bind to receptor**

<u>Natural Products</u> – broad class of naturally occurring substance, typically secondary metabolite (no essential metabolic function for the organism)

- Terpenoids (Lectures 12)
- Non-ribosomal Polypeptides (today)
- Alkaloids (Lecture 16)
- Fatty acid-derived substances & Polyketides
- Enzyme Cofactors

β-Lactam Antibiotics are derived from non-ribosomal tripeptides

But first...what's a ribosomal (normal) tripeptide look like?


For each antibiotic below, can you draw the tripeptide from which each was derived?

Cephalexin (a cephalosporin)

Penicillin G

Isopenicillin N

Penicillin's Mechanism of Action: Deactivation of Bacterial Transpeptidase

Bacterial cell walls surrounded by *murein*, synthesized by *Transpeptidase* (aka *penicillin-bind protein*, PBP)

Peptidoglycan Layer (repeating unit)