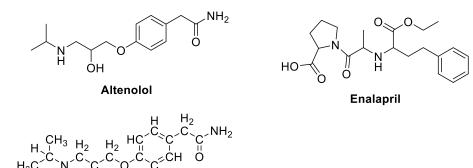
CHEM 8A FUNdamentals

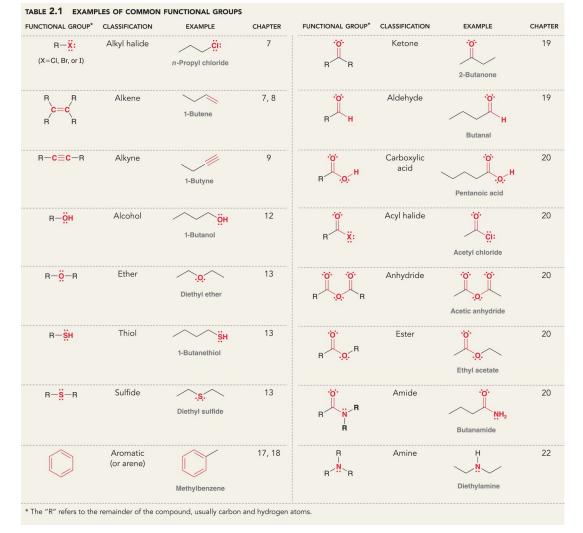

Functional Groups, Arrow-Pushing, Acid-Base Chemistry, Alkene Reaction Review

1. Functional Groups (FGs)

characteristic group of atoms / bonds that possess a predictable chemical behavior

- FGs organize organic molecules by specific bonding patterns - properties & reactivity

Identify the FGs in the blood pressure medications below. Decode enalapril (redraw with C's & Hs).



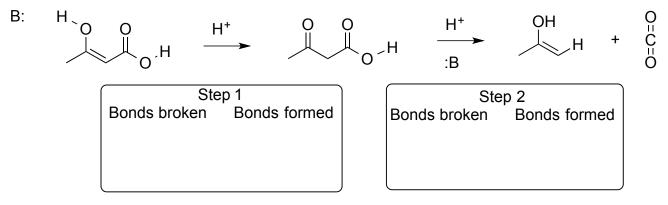
Decoded:

 H_3C

н юн

- Be able to identify & draw a simple example of each FG from Table 2.1...

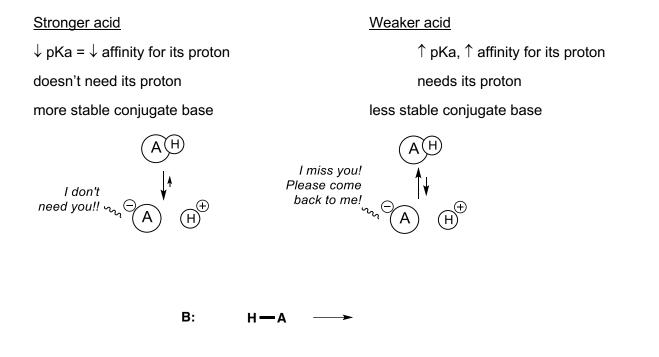
1


8A FUNdamentals: Arrow Pushing

Symbology – all the arrows

Curved	Fish-hook	Resonance	Reaction	Reversible Reaction	Dipole

** Curved arrows start at Electron Rich (Nucleophile) and end at Electron Poor (Electrophile)**


Add curved arrows with a note - which covalent bonds are broken and/or formed according to that arrow?

Reflect on mistakes: did you have different arrows? Copy your mistakes below and/or your neighbor's mistakes. Discuss what those incorrect arrows mean and why it's incorrect.

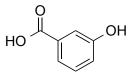
8A FUNdamentals: Acid-Base Chemistry

	Bronsted-Lowry	Lewis	
	Proton (H ⁺) movement	Electron (e-) movement	$HA \rightarrow H^+ + A^-$
Acids	Donate H⁺	Accept Electrons	Ka, acid-dissociation constant
Bases	Accept H⁺	Donate e-	pKa = - log Ka pKa, affinity of an acid for its proton

Direction of equilibrium: Who wants that proton (H⁺) more??

Compare acid (left) to conjugate acid (right)...weaker acid (lower pKa) favored

Draw the arrow-pushing mechanism and products. Then determine the direction of the equilibrium.


 \bigcirc H CH_3NH_2 \longrightarrow

Quantitative Acidity Ranking & the pKa Game!

Learn these pKa's with formula, structure, & name				Example of
рКа	Formula / Structure	Name	Functional Group	other acid in the pKa family
-7	НСІ	Hydrochloric acid Inorganic Acids		HBr, H ₂ SO ₄
-1				H ₃ PO ₄ , HNO ₃
0	H₃O⁺	Hydronium Protonated Alcohols		$\bigcirc - \overset{\oplus}{OH_2}$
5	ОН	Acetic acid	Carboxylic Acids	ОН
7	H₂S	Hydrogen sulfide	Thiols	SH
	⁺ NH₄ &	Ammonium	Ammonium derivatives	→ NH ₃
10	ОН	&	&	СІ
	These 2 have same pKa	Phenol (PhOH)	phenol derivatives	
16	H₂O	Water	Alcohols	OH
19	O L	Acetone	Carbonyls: ketone, aldehyde, ester, amide, anhydride, acid halides	O C
35	NH3	Ammonia	Amines	NH ₂
50	CH₄	Methane	Hydrocarbons	

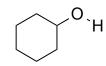
Find the most acidic H^+ in the molecule and **organize acids by pKa family / FG**

What if there's more than one functional group?!

<u>Qualitative Acid Ranking</u>: ARIO = atom, resonance, induction, orbitals

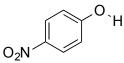
ATOM: which atom bears the charge better?

Refer to periodic table of elements

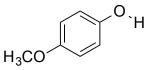

• <u>Same row</u> – more electronegative atom vs. <u>Same column</u> – larger atom

Ex. Any thiol is more acidic than any alcohol

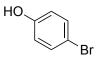
RESONANCE: can the negative charge be spread out by resonance?

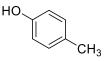

Any phenol is more acidic than any alcohol

С Η

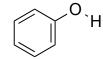


- <u>Electron withdrawing groups (EWG's)</u> increase acidity decrease acidity


- Electron donating groups (EDG's)



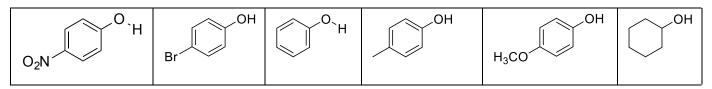
INDUCTION: are electronegative atoms nearby to stabilize the charge?



Η

ORBITAL: Electrons held farther from nucleus are less stable than those held closer

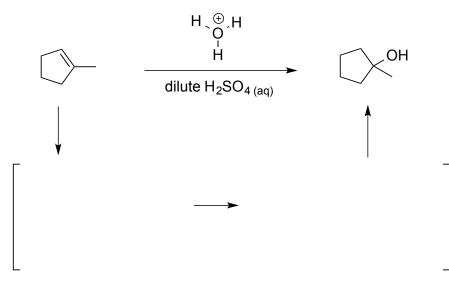
• sp² atoms are happier with negative charge than sp³ atoms.



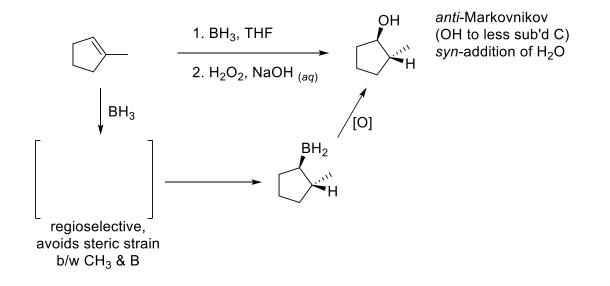
MOST ACIDIC

(lower pKa)

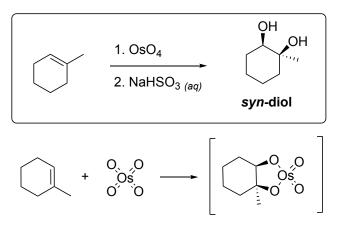
LEAST ACIDIC



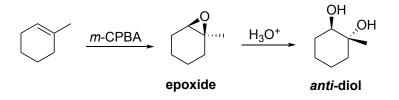
8A FUNdamentals: Preparation of Alcohols from Alkenes (Chapter 8)

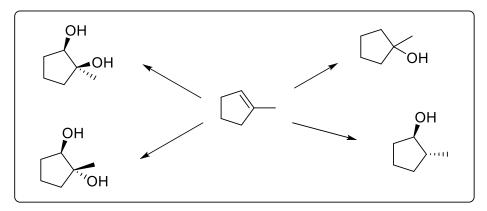

Any reactions & mechanisms from CHEM 8A that you need to know will be reviewed in 8B, starting with...

Acid-Catalyzed Hydration – Markovnikov Addition of Water



Hydroboration / Oxidation - anti-Markovnikov addition of water


- H & OH added syn; OH goes to less substituted alkene carbon


cis-Hydroxylation

Epoxidation & Epoxide-Opening

Alcohol preparation summary:

Functional Groups, Arrow-Pushing, Acid-Base Chemistry, Alcohol Preparation Review