
Chapter 12 – Alcohols 💜

OH

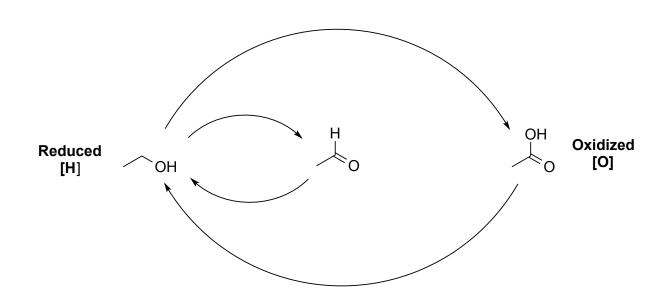
CH₃CH₂OH

Ethanol, bp 78 °C

isopropanol rubbing alcohol, bp 108 °C

Tetrahydrocannabinol (THC Δ-9), bp 155 °C

(12.2) Acid-Base Properties of Alcohols

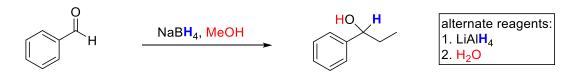

Alcohols are weak acids

NaH

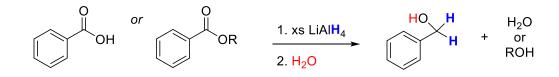
Alcohols are weak bases

 H_2SO_4 OH

REDOX Reactions: Alcohols to & from Carbonyl Compounds

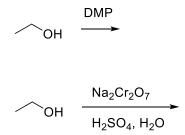


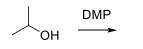
12.4 Preparation of Alcohols via Reduction


Reducing Agents:

NaBH₄ Na [⊕] H⊖ H−B−H H H	LiAIH₄ Li [⊕] H - AI - H H lithium aluminium hydride	H ₂ with Pt, Pd, or Ni hydrogen gas with platinum, palladium, or nickel H_2 H_2 H_2 H_2 H_2
--	--	--

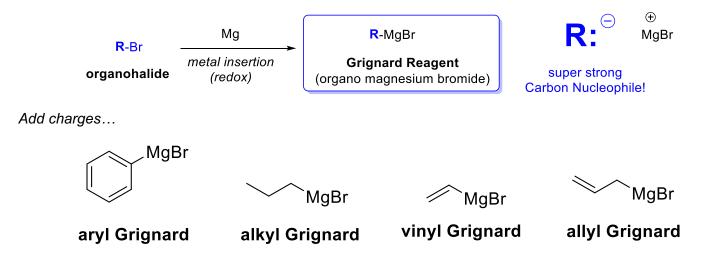
Reduction of Aldehydes & Ketones


Reduction of Carboxylic Acids & Esters


12.10 Reactions of Alcohols: Oxidation

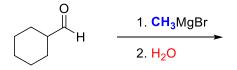
Mild oxidiz	Strong oxidizing agents	
AcO OAc $OAc = ^{2}OO$ Dess-Martin Periodinane (DMP) Swern oxidation: Dimethylsulfoxide of 1. DMSO, (COCI) ₂	Image: Constraint of the second system O Image: Constraint of the second system Image: Constraint of the second system O Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system Image: Constraint of the second system	Chromic Acid (H ₂ CrO ₄) Generated <i>in situ</i> by mixing together • Na ₂ Cr ₂ O ₇ , H ₂ SO ₄ , H ₂ O – sodium dichromate in aqueous sulfuric acid
2. Et ₃ N O H ₃ C ^{/S} CH ₃ dimethyl sulfoxide (DMSO)	$CI \xrightarrow{O}_{CI}$ oxalyl chloride $(COCI)_2$	Or • CrO ₃ , H ₃ O ⁺ - chromium (III) oxide in aqueous acid esponsible for oxidation mechanisms!

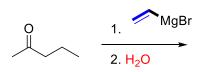
Primary alcohols


Secondary alcohols

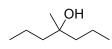
Tertiary alcohols

$$\bigvee_{OH} \xrightarrow{Na_2Cr_2O_7, H_2SO_4, H_2O} No Reaction!$$

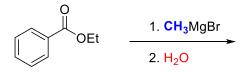

(12.6) Preparation of Alcohols via Grignard Reagents

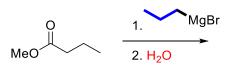


Nucleophilic Grignard Additions to Aldehydes & Ketones

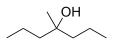


Predict the product...

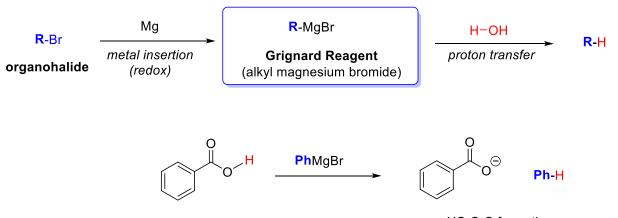

Make this alcohol using a Grignard + (aldehyde or ketone)



Grignard Additions to Esters



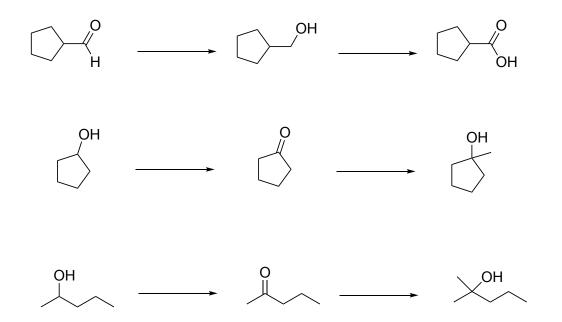
Predict the product...



Make this alcohol using a Grignard + ester



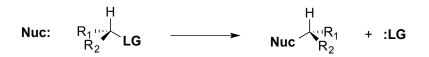
Grignards be Bases



NO C-C formation

Summary of Carbonyl Compounds → Alcohols

REDOX RECAP: Fill in the missing reagent over the arrow with the **appropriate oxidizing or reducing agent**, or with a Grignard reagent (alkyl magnesium bromide).

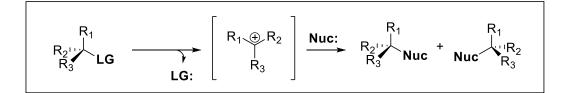


(12.9) Reactions of Alcohols: Substitution & Elimination

Substitution of Alcohols ... "OH" is a bad leaving group!

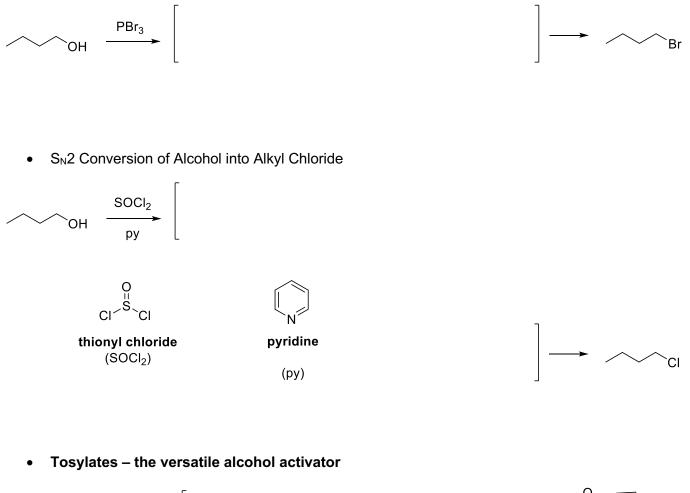
S_N2 = Bimolecular Nucleophilic Substitution

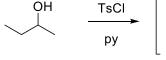
- One-step reaction: nucleophile attacks as the leaving group leaves

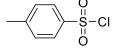


• S_N2 Conversion of Alcohol into Alkyl Bromide

S_N1 = Unimolecular Nucleophilic Substitution

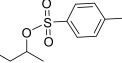

- Two-step reaction:
 - 1. Loss of a leaving group
 - 2. Nucleophilic Attack

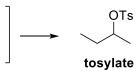




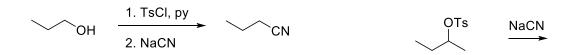
(12.9) Alcohol Substitution: Activation

• S_N2 Conversion of Alcohol into Alkyl Bromide

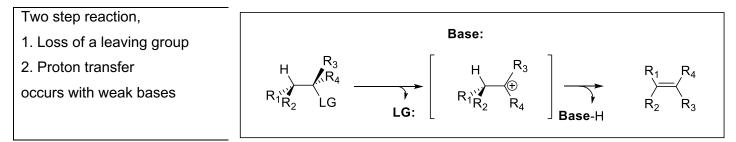



para-toluenesulfonic chloride (tosyl chloride, TsCl)

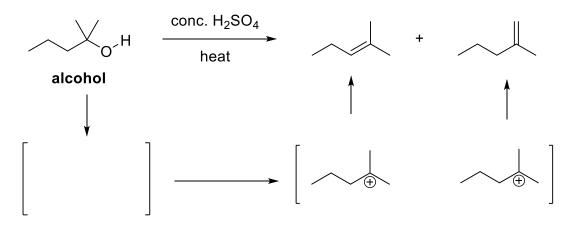
pyridine


(py)

tosylate

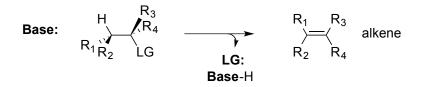


• Substitution with Tosylates – add your favorite nucleophile

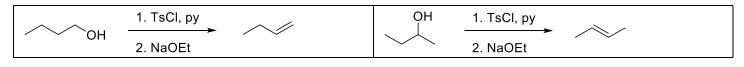


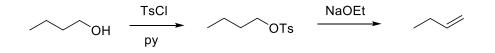
(12.9) Alcohol Elimination, aka Dehydration

E1 – Unimolecular Elimination

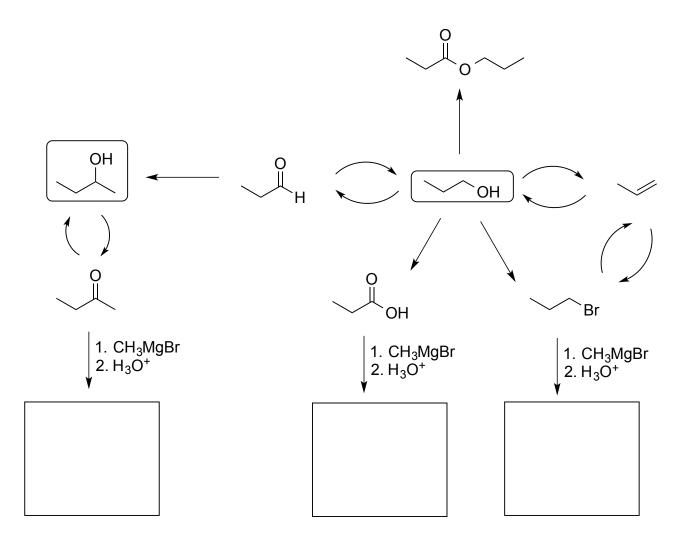


Tertiary Alcohols




E2 – Bimolecular Elimination

- 1 step, requires strong base (alkoxide, hydroxide, or amide ions)


Primary and Secondary Alcohols

Chapter 12 - Alcohol Reaction Puzzle

Rxn Overview & Synthesis Prep: Add reagents over each arrow and fill in the empty boxes

Multi-Step Synthesis: Each transformation below requires more than one reaction to be completed. Indicate the steps involved to make each compound from the starting material provided and any reagents or carbon sources.

