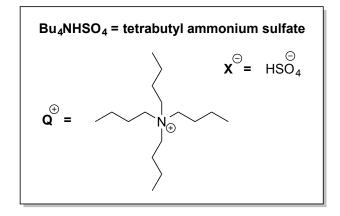
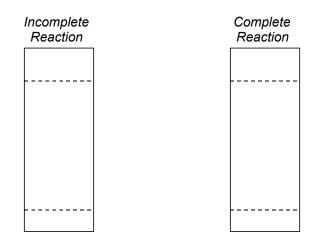

CHEM 8M, Experiment 3 – Oxidation of Benzhydrol


- Reactions using Phase Transfer Catalysts (PTC)
- TLC, IR, and ¹H NMR Analysis of Benzhydrol & Benzophenone

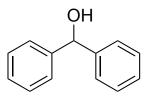
Oxidation of Benzhydrol with Bleach using Phase Transfer Catalyst

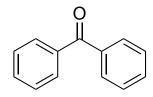


Phase Transfer Catalysis (PTC)

Monitoring Reaction Progress by TLC

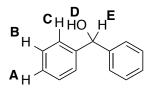
Reaction Work-up: remove AQ, wash with brine then water, dry, filter, rota-vap

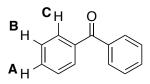

IR Analysis


 $\begin{array}{c} \mathsf{OH} & \bullet & \mathsf{O} \\ \mathsf{Ph} & \longrightarrow & \mathsf{Ph} & \overset{\mathsf{O}}{\vdash} \mathsf{Ph} \end{array}$

¹H NMR Analysis = assign each set of protons on structure to signal on spectrum

Predict spectrum

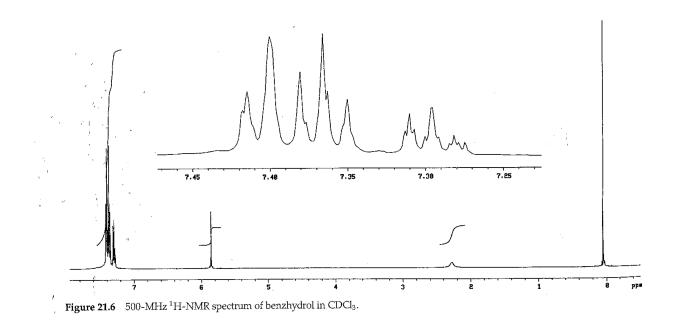

1. Look for symmetry – equivalent protons and for asymmetry – non-equivalent protons



2. Integration: How many of each type of proton?

3. Identify chemical shift ranges in benzhydrol & benzophenone

Benzhydrol


Benzophenone

4. Calculate expected chemical shifts using chemical shift correlation tables or online predictor tool

 Table 3. ¹H NMR Analysis of Benzhydrol

C _H HO _U H ^E	Signal	Integration (# of H's)	Expected Chemical Shift (ppm)	Observed Chemical Shift (ppm)
B _H A _H Benzhydrol	Α			
	В			
	С			
	D			
	E			

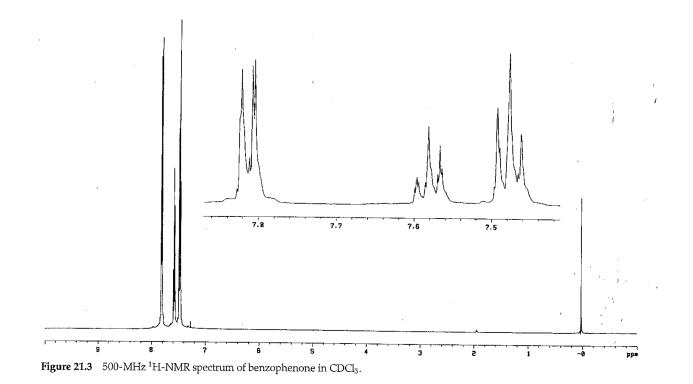

Correlate / assign to signals on given spectrum - Integration lines = Curves on or above peaks, height = relative ratio of H's

Table 4. ¹H NMR Analysis of Benzophenone

	Signal	Integration (# of H's)	Expected Chemical Shift (ppm)	Observed Chemical Shift (ppm)
	A'			
A _H	B'			
Benzophenone	C'			

Correlate / assign to signals on given spectrum

Supplemental Reading

Klein, D. "Organic Chemistry, 2nd Edition"; **Mohrig**, J. R.; *et. al.* "Techniques in Organic Chemistry, 4th Edition." See also Exp 3 pre-lab videos on Canvas

Oxidation reactions	Klein 12.10
¹ H NMR	Klein 15.1-6 or Mohrig Chapter 22.1-22.7
Extraction	Mohrig Chapter 10
TLC	Mohrig Chapter 18