NMR Problem Set						
Pages 1-4	Pages 5-8	Page 9				
#1 Predict spectra from given	#2-4 Structure elucidation from	#5 Summary / Overview				
structure	given spectra					

- **1.** Predict the ¹H NMR spectrum for compounds (b) (f) below.
 - Add in the missing hydrogens
 - Determine the **number of** ¹H NMR signals in each compound below.
 - Label each **type of proton** (A, B, etc.) and fill in the tables provided on the following page with a row for each type of proton (signal).
 - Predict the **integration** (#H's), the **chemical shift range** (ppm), and **calculated chemical shift** (ppm), that you would expect for each signal.
 - Determine the **splitting pattern** for each signal using the <u>*n*+1 rule</u>, where *n* is the number of H's on adjacent carbon atoms.
 - Splitting patterns: singlet, doublet, triplet, quartet, pentet, sextet, heptet, or multiplet.
 - There is no splitting through heteroatoms (O, N, S, etc.) all OH's are singlets!
 - Sketch the predicted ¹H NMR spectrum of each compound and use <u>nmrdb.org</u> to check your work
 - Approximate the central chemical shift of the signal on the x-axis and *draw* each splitting pattern.
 - Don't worry about incorporating integration (peak size).

(1a) Worked example: Watch the "How to do the NMR Problem Set" video on Canvas

Br _∼ ∠CH ₃	Signal	Integration	Splitting n+1 rule	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*
A ^H Br	A	1H	quartet	2.1 – 4.5	5.7
	В	ЗH	doublet	0.8 - 1.9	2.3

Calculate expected chemical shifts using *Table 22.3 of NMR tables – alkyl H's

Calculation of Signal	Α	-	
Methine (CH)	+	2 x Br (alpha substituent)	
1.5 ppm	+	(2 x 2.1)	= 5.7 ppm
Calculation of Signal	В		
Methyl (CH ₃)	+	2 x Br (beta substituent)	
0.9 ppm	+	(2 x 0.7)	= 2.3 ppm

0

Tables for #1 – create as many rows as the number of signals in each compound, read page 1 for more!

(46)	Signal	Integration	Splitting	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*

Sketch of ¹H NMR spectrum:

12

Chemical Shift (ppm)

Sketch of ¹H NMR spectrum:

Tables for #1 – create as many rows as the number of signals in each compound, read page 1 for more!

(1d)	Signal	Integration	Splitting	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*

Note: Use correlation Table 22.4 for aromatic H's and Table 22.3 for alkyl H's

Sketch of ¹H NMR spectrum:

12

Chemical Shift (ppm)

0

(1e)	Signal	Integration	Splitting	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*
, i dy					

Note: Use correlation Table 22.4 for aromatic H's; no calculation for OH

Sketch of ¹H NMR spectrum:

Tables for #1 – create as many rows as the number of signals in each compound, read page 1 for more!

	Signal	Integration	Splitting	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*
(1f)					
о о о он					

Sketch of ¹H NMR spectrum:

- 2. Structural Elucidation: Draw structures for compounds that meet the following descriptions.
 - 1. Calculate **degrees of unsaturation** from the **molecular formula** to determine the number of pi bonds or rings
 - 2. Use IR to identify potential bonds & functional group(s)
 - 3. Draw structure fragments for each ¹H NMR signal using the integration & splitting
 - a. Ex. **2H doublet** = C**H**₂CH, where the bold H's are determined by integration (2H) and the neighboring CH group is determined by splitting (doublet)
 - b. Incorporate functional groups into fragments where possible using chemical shifts
 - i. Ex. δ 4.0 (2H doublet) = OCH₂CH
 - ii. the 2H's are deshielded by the electronegative oxygen, resulting in a higher chemical shift
 - 4. Put the **fragments** together in the final structure.

Formula	Degrees Unsat.	Suspected bonds / FG(s) from IR	Fragment(s) from ¹ H NMR	Final Structure
C3H6O	1	1720 cm ⁻¹ C=O 2900 cm ⁻¹ Alkane sp ³ C-H	δ 2.0 ppm (6H singlet) 6H's are next to 0 H's CH ₃ C _(no H's) Symmetry - 2 x CH ₃ groups	o
C3H7CI	0	2900 cm ⁻¹ Alkane 800 cm ⁻¹ C-Cl bond	δ 3.7 (6H doublet) ^ next to Cl Doublet = 6H's next to one H (CH ₃) ₂ CHCl δ 1.4 (1H septet) ^ farther from Cl Septet = 1H next to 6 H's (CH ₃) ₂ CHCl	(C <mark>H₃</mark>)₂C <mark>H</mark> CI

Worked examples: Watch the "How to do the NMR Problem Set" video on Canvas

Formula	Degrees Unsat	Suspected bonds /	Fragment(s) from ¹ H NMR	Final Structure
- Tormana	onsu:		δ 4.1 (2H quartet)	
(2a)		1760 cm ⁻¹	δ 2.3 (2H quartet)	
C5H10O2		2900 cm ⁻¹	δ 1.3 (3H triplet)	
			δ 1.1 (3H triplet)	
			δ 4.0 (2H quartet)	
(2b)		1760 cm ⁻¹	δ 2.0 (3H singlet)	
G4118O2		2000 0111	δ 1.4 (3H triplet)	
			δ 3.8 (1H septet)	
(2c)		3300 cm ⁻¹ 2900 cm ⁻¹	δ 2.0 (1H broad singlet)	
031180			δ 1.2 (6H doublet)	

Formula	Degrees Unsat.	Suspected bonds / FG(s) from IR	Fragment(s) from ¹ H NMR	Final Structure
			δ 7.85 (2H doublet)	
		3050 cm ⁻¹	δ 7.28 (2H doublet)	
(2d) Bonus Problem:		1675 cm ⁻¹	δ 2.9 (2H quartet)	
C ₁₀ H ₁₂ O		1620 cm ⁻¹	δ 2.0 (3H singlet) *benzylic	
		850 cm ⁻¹	δ 1.5 (3H triplet)	

3. Determine the **structure** of a compound with molecular formula $C_4H_{10}O$ and the integrated ¹H NMR spectrum below (**rel. area** gives the *ratio* of H's per signal). Identify the splitting pattern from the expanded shapes in the spectrum (**m = n + 1**, where **m** = multiplicity, triplet or quartet and **n** = number of neighboring H's).

Show your work: draw fragments of the molecule in addition to the full structure.

 This box gives the relative area (integration or ratio of H's) of both peaks, identified by chemical shift.

4. Propose a structure for a compound with formula $C_5H_{10}O_2$ and a sharp IR absorbance at 1735 cm⁻¹. Identify the splitting pattern from the expanded shapes in the spectrum (**m** = **n** + **1**, where **m** = multiplicity, triplet or quartet and **n** = number of neighboring H's). The signal at 2.0 is a singlet.

Chem. Rel. shift area 1.22 6.00 2.01 3.00 4.99 1.00 Intensity 10 8 7 3 2 9 6 5 4 0 ppm 1 Chemical shift (δ)

•

- Show your work: **draw fragments** of the molecule in addition to the **full structure**.
- \downarrow This box gives the relative area (integration) of all peaks, identified by chemical shift.

(a) Predicting Spectra

(b) Structural Elucidation