NMR Problem Set

Pages 1-4	Pages 5-8	Page 9
\#1 Predict spectra from given structure	\#2-4 Structure elucidation from given spectra	\#5 Summary / Overview

1. Predict the ${ }^{1} \mathrm{H}$ NMR spectrum for compounds (b) - (f) below.

- Add in the missing hydrogens

- Determine the number of ${ }^{1} \mathrm{H}$ NMR signals in each compound below.
- Label each type of proton (A, B, etc.) and fill in the tables provided on the following page with a row for each type of proton (signal).
- Predict the integration (\#H's), the chemical shift range (ppm), and calculated chemical shift (ppm), that you would expect for each signal.
- Determine the splitting pattern for each signal using the $\underline{n+1}$ rule, where n is the number of H's on adjacent carbon atoms.
- Splitting patterns: singlet, doublet, triplet, quartet, pentet, sextet, heptet, or multiplet.
- There is no splitting through heteroatoms ($\mathrm{O}, \mathrm{N}, \mathrm{S}$, etc.) - all OH's are singlets!
- Sketch the predicted ${ }^{1} \mathrm{H}$ NMR spectrum of each compound and use nmrdb.org to check your work
- Approximate the central chemical shift of the signal on the x-axis and draw each splitting pattern.
- Don't worry about incorporating integration (peak size).
(a)

(b)

(c)

(d)

(e)

(f)

(1a) Worked example: Watch the "How to do the NMR Problem Set" video on Canvas

Br $\mathbf{A}^{\mathrm{H}} \mathrm{H}_{\mathrm{Br}}$	Signal	Integration	Splitting n+1 rule	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*
	\boldsymbol{A}	$1 H^{*}$	quartet	$2.1-4.5$	5.7
	\boldsymbol{B}	$3 H$	doublet	$0.8-1.9$	2.3

Calculate expected chemical shifts using *Table 22.3 of NMR tables - alkyl H's Calculation of Signal A

$$
\begin{array}{ll}
\text { Methine }(\mathrm{CH}) & +2 \times \mathrm{Br} \text { (alpha substituent) } \\
1.5 \mathrm{ppm} & +\quad(2 \times 2.1)
\end{array}=5.7 \mathrm{ppm}
$$

Calculation of Signal B
Methyl $\left(\mathrm{CH}_{3}\right)+2 \times \mathrm{Br}$ (beta substituent)
$0.9 \mathrm{ppm}+(2 \times 0.7)=2.3 \mathrm{ppm}$

Tables for \#1 - create as many rows as the number of signals in each compound, read page 1 for more!

(1b)	Signal	Integration	Splitting	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*

Sketch of ${ }^{1} \mathrm{H}$ NMR spectrum:

	Signal	Integration	Splitting	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*

Sketch of ${ }^{1} \mathrm{H}$ NMR spectrum:

Tables for \#1 - create as many rows as the number of signals in each compound, read page 1 for more!

(1d)	Signal	Integration	Splitting	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*

Note: Use correlation Table 22.4 for aromatic H's and Table 22.3 for alkyl H's

Sketch of ${ }^{1} \mathrm{H}$ NMR spectrum:

	Signal	Integration	Splitting	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*

Note: Use correlation Table 22.4 for aromatic H's; no calculation for OH

Sketch of ${ }^{1} \mathrm{H}$ NMR spectrum:

Tables for \#1 - create as many rows as the number of signals in each compound, read page 1 for more!

(1f)	Signal	Integration	Splitting	Chemical Shift Range (ppm)	Calculated Chemical Shift (ppm)*

Sketch of ${ }^{1} \mathrm{H}$ NMR spectrum:

2. Structural Elucidation: Draw structures for compounds that meet the following descriptions.
3. Calculate degrees of unsaturation from the molecular formula to determine the number of pi bonds or rings
4. Use IR to identify potential bonds \& functional group(s)
5. Draw structure fragments for each ${ }^{1} \mathrm{H}$ NMR signal using the integration \& splitting
a. Ex. $\mathbf{2 H}$ doublet $=\mathrm{CH}_{2} \mathrm{CH}$, where the bold H's are determined by integration $(2 \mathrm{H})$ and the neighboring CH group is determined by splitting (doublet)
b. Incorporate functional groups into fragments where possible using chemical shifts
i. Ex. $\delta 4.0(2 \mathrm{H}$ doublet $)=\mathrm{OCH}_{2} \mathrm{CH}$
ii. the 2 H 's are deshielded by the electronegative oxygen, resulting in a higher chemical shift
6. Put the fragments together in the final structure.

Worked examples: Watch the "How to do the NMR Problem Set" video on Canvas

| Formula | Degrees
 Unsat. | Suspected bonds $/$
 FG(s) from IR | Fragment(s) from ${ }^{1} \mathbf{H}$ NMR |
| :--- | :---: | :---: | :---: | :---: |\quad Final Structure

Formula	Degrees Unsat.	Suspected bonds / FG(s) from IR	Fragment(s) from ${ }^{1} \mathrm{H}$ NMR	Final Structure
(2a) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$		$\begin{aligned} & 1760 \mathrm{~cm}^{-1} \\ & 2900 \mathrm{~cm}^{-1} \end{aligned}$	$\delta 4.1$ (2H quartet) $\delta 2.3$ (2H quartet) $\delta 1.3$ (3H triplet) $\delta 1.1$ (3H triplet)	
(2b) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$		$\begin{aligned} & 1760 \mathrm{~cm}^{-1} \\ & 2900 \mathrm{~cm}^{-1} \end{aligned}$	$\delta 4.0$ (2H quartet) $\delta 2.0$ (3H singlet) $\delta 1.4$ (3H triplet)	
(2c) $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$		$\begin{aligned} & 3300 \mathrm{~cm}^{-1} \\ & 2900 \mathrm{~cm}^{-1} \end{aligned}$	$\delta 3.8$ (1H septet) $\delta 2.0$ (1H broad singlet) $\delta 1.2$ (6H doublet)	

Formula	Degrees Unsat.	Suspected bonds $/$ FG(s) from IR	Fragment(s) from ${ }^{1} \mathbf{H}$ NMR	Final Structure

3. Determine the structure of a compound with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ and the integrated ${ }^{1} \mathrm{H}$ NMR spectrum below (rel. area gives the ratio of H's per signal). Identify the splitting pattern from the expanded shapes in the spectrum ($\mathbf{m}=\mathbf{n + 1}$, where $\mathbf{m}=$ multiplicity, triplet or quartet and $\mathbf{n}=$ number of neighboring H's).

- Show your work: draw fragments of the molecule in addition to the full structure.
\downarrow This box gives the relative area (integration or ratio of H's) of both peaks, identified by chemical shift.

4. Propose a structure for a compound with formula $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{2}$ and a sharp IR absorbance at $1735 \mathrm{~cm}^{-1}$. Identify the splitting pattern from the expanded shapes in the spectrum ($\mathbf{m}=\mathbf{n + 1}$, where $\mathbf{m}=$ multiplicity, triplet or quartet and $\mathbf{n}=$ number of neighboring H's). The signal at 2.0 is a singlet.

- Show your work: draw fragments of the molecule in addition to the full structure.
\downarrow This box gives the relative area (integration) of all peaks, identified by chemical shift.

5. Summarize your process for (a) predicting spectra and (b) elucidating / solving a structure from spectral data.
(a) Predicting Spectra
(b) Structural Elucidation
