Name	_ Partner Name			
TA Name	Section Letter	Day	Time	

Experiment 3 Worksheet – Oxidation of Benzhydrol

Each student submits this individually on Canvas after lab

Pre-Lab Requirements

- 1. **Dress for lab** see safety rules please arrive a few minutes early
- 2. Lab Notebook: copy templates below into designated notebook
 - Purpose, scheme, and reagent table
 - Procedure Diagrams copy templates provided, follow instructions to complete diagrams

A. Experimental Purpose and Oxidation Reaction Scheme

B. Reagent Table

Refer to the procedure for amounts and safety table for hazards; find the chemical properties on Wikipedia!

Name	Volume	Density	Mass	MW	mmol	Equiv*	Boiling or melting point	Hazards
Benzhydrol	-					1	P • •	
Bleach (~0.7 M)		-						
Tetrabutyl ammonium sulfate, Bu₄N⁺HSO₄⁻								
Ethyl Acetate						М		
Benzophenone (product)	-					-		

* **Equiv** = molar equivalents of reaction components with respect to the limiting reagent (benzhydrol)

- Bleach & Bu₄N⁺HSO₄⁻ (reagents): divide the mmol of reagent by the mmol of benzhydrol

- Ethyl Acetate (solvent): approximate concentration = divide the mmol of benzhydrol by the volume of solvent

Check out Slugs@home for pics & videos of the full lab!

Template – copy by hand into notebook

<u>**C. Procedure Diagrams**</u> – worksheet = template / outline to copy by hand into lab notebook

- Use the procedure from the lab PDF create your hand-drawn experimental instructions
 - o Simple sketches & labels for all equipment, chemical names with amounts, & transfers
 - o Include clean-up & safety notes throughout your procedure and leave space for observations
- <u>Format</u>: Break it up with flow charts, bullet-points, comic strip, and/or whatever works for you!
 - Avoid copying the procedure word-for-word.
 - Make it easy for anyone to follow your procedure without referring to this document.
- Slugs@home Exp 3 website Equipment & Safety pages; pictures & videos of the whole lab
- The class notes include useful diagrams as well
- Use as many pages as needed at least 3 pages is typical
- 1. Reaction Preparation and Set-up chemicals added to flask, preparing TLC plates with standards
- 2. Monitoring Reaction Progress representative aliquot from reaction and steps for spotting, running, and visualizing the TLC plate
- 3. Reaction Work-Up include all transfers from one container to another
- **4. Analysis** steps for preparing IR sample and rough sketch of both IR spectra; NMR not included in this section

E. Data

Mass of benzhydrol _____ mg

Theoretical yield _____ mg

Calculation:

Sketches of TLC plates and calculated R_f values for each spot:

<u>Standards</u>

Reaction Aliquots (portions over time)

Notes on potential Product loss:

Product mass _____ mg

Percent recovery = (product mass) / (theoretical yield) x 100% = _____%

IR Analysis – Observe the IR spectrum in the website and identify any signals within the expected range. It is acceptable for a signal to be "not observed."

Benzhydrol

Functional Group	Bond	Expected Wavenumber Range (cm ⁻¹)	Observed Wavenumber (cm ⁻¹)

Benzophenone

Functional Group	Bond	Expected Wavenumber Range (cm ⁻¹)	Observed Wavenumber (cm ⁻¹)

Benzhydrol – add structure with H's labeled A-E

Signal	Integration (# of H's)	Expected Chemical Shift (ppm)	Observed Chemical Shift (ppm)
A	. ,		
В			
С			
D			
E			

Calculations for expected chemical shifts:

Benzophenone structure with H's labeled A' – C'

Signal A'	Integration (# of H's)	Expected Chemical Shift (ppm)	Observed Chemical Shift (ppm)
B' C'			

Calculations for expected chemical shifts:

F. Experimental Methods Writing Worksheet - provided in lab ©

1. Draw the **reaction scheme** by hand (no copy/paste) and list the **name of the product**. *The reaction scheme includes reactant, reagents over arrow, solvent under arrow, and product.*

2. What glassware and equipment was used for this reaction (aside from chemicals)?

3. How much **benzhydrol** was used? Convert **mass** to **mmol** (**xx g**, **xx mmol**). Show your work, including units with every value. Calculate or look up the molecular weight of benzhydrol (g/mol) = (mg/mmol).

4. How much bleach (**NaClO**) was used and what was the **concentration** (_____**M**, ____**mL**)? Fill in the blanks and calculate the quantity of **bleach in mmoles.** Show your work. *Recall Molarity* = (*moles / Liter*) ... M = (mol / L) = (mmol / mL).

5. How much *tert*-butylammonium hydrogen sulfate (**Bu**₄**NHSO**₄) was used (**xx g**)? This is a catalyst – include only mass not mmol.

6. Determine the **limiting reagent** then calculate the **theoretical yield** (mmol and mg). Show your work, including units with every value. *Determine the mole ratio in the reaction (x mol benzyhydrol / x mol benzophenone).* Calculate or look up the molecular weight of benzhydrophenone (g/mol) = (mg/mmol).

F. Experimental Methods Writing Worksheet (cont'd)

7. What **solvent** was used in the oxidation reaction and in what **volume**?

8. What was the reaction temperature and time? Was the reaction stirred, refluxed, or standing?

9. What technique was used to monitor reaction progress? What solvent(s) were used during this analysis?

10. List the **identity** and **quantities** of the **chemicals (xx mL)** used in the **reaction work-up**. *Note: quantity of drying agent need not be included.*

11. What additional processes were involved in the final isolation of product?

12. What is the yield of **benzophenone** (_____ **g**, _____ **mmol**, _____ **% yield**)? Fill in the blanks and show your work below, including units on every value.

(a) Convert benzophenone mass (300 mg) to mmol using molecular weight (g/mol) = (mg/mmol).

(b) Calculate percent (%) yield using 300 mg as the actual yield and the th. yield from #6.

% yield = <u>actual yield (mg)</u> x 100% Theoretical yield (mg)