CHEM 8L, Experiment 4 – Infrared (IR) Spectroscopy

Experiment 4 – Infrared Spectroscopy

- Bond vibration (stretch & bend) frequency
- Relationship of vibrational frequency to absorbance of IR
- Functional group identification
- Predicting and interpreting IR spectra of a given structure

Wave nature of energy...

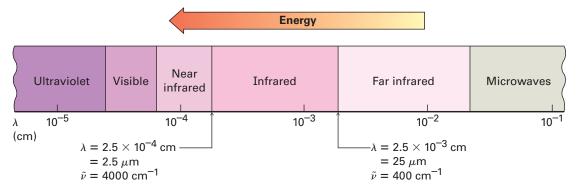


Figure 12.13 The infrared and adjacent regions of the electromagnetic spectrum.

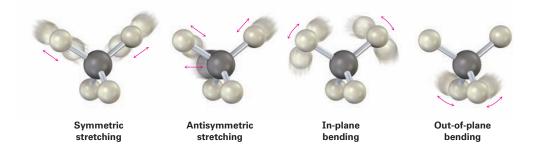
Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eCha

- E Energy of radiation,
- h Planck's constant, 6.62607015 × 10^{-34} Js
- v frequency (cycles per second, s⁻¹)

- v frequency (cycles per second, s⁻¹)
- λ wavelength (distance, m)
- **c** speed of light, 3×10^8 m / s

IR Spectroscopy identifies bonds within specific functional groups

Ex. Stretching vibration of alcohol O-H bond occurs ~ 10^{14} cycles / sec, v = 10^{14} s⁻¹


Wavelength

Wavenumber

Wavenumber - unit of choice for IR spectroscopy

$$\frac{1}{\nu} = \frac{1}{\lambda}$$

Types of Bond Vibrations

J. McMurry, Organic Chemistry, 8th Edition. Cengage: Belmont. 2008.

- Frequency of vibration depends on **bond length** - Longer bonds take longer to expand/contract = slower frequency, \Downarrow_V

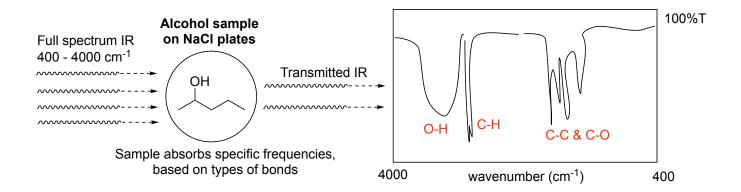
Vibrational Frequency and Wavenumber

Bond Stretching

Fully expanded

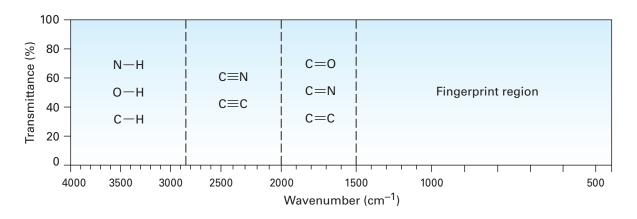
Fully contracted

Stretching wave represents oscillation between expanded & contracted bond


Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it. Wavelength of bond stretching wave is converted into wavenumber

What role does the IR spectrometer play?

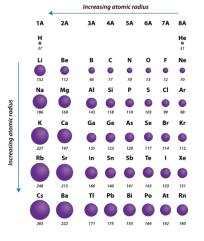
Constructive Interference


Instrument detects transmitted wavenumbers (energy not absorbed by compound) & plots on spectrum

** IR Table of Values gives expected ranges each bond vibration within functional groups ***

General areas of interest in IR spectrum...

* C-H bending & C-X stretching occurs less than 1000 cm⁻¹

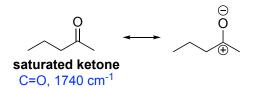

* C-C, C-N, and C-O bonds stretch between 1500 – 1000 cm⁻¹ (ignore)

	O-H	C-H	C=O
Bond Length (pm)	100	110	120
Stretching Frequency (cm ⁻¹)	3300	2900	1700

Longer Bond = Slower (\downarrow) Stretching Frequency

Factors Effecting Bond Length - refer to IR Table of Values

- Atomic Radius



- Hybridization / Type of bond

Ex. C-H bonds alkane vs. alkene

Ex. C-C in alkene vs. alkyne

- Conjugation / Resonance

0 VS. Ð conjugated

ketone C=O, 1675 cm⁻¹

Experiment 4 Preparation – Predicting IR Spectra

Make three IR tables – one for each compound above.

- 1. Identify all functional groups
- Use the IR table of values to find the corresponding bond(s) and stretches / bends.

Table x. IR Analysis of Carvone

Functional Group	Bond Assignment (C=O, N-H, etc.) from IR Table	Expected Wavenumber from IR Table	Observed Wavenumber

Table 1. Characteristic IR Absorption Peaks of Functional Groupsⁱ

Functional Group & Bond Vibration	Position (cm ⁻¹)	Intensity*	Notes
Alkanes C-H stretch	2990 – 2850	m to s	
Alkenes =C-H stretch C=C stretch =C-H bend	3100 – 3000 1680 – 1620 (sat.) 1650 – 1600 (conj.) 995 – 685	m w to m s	See Table 2 for detail
Alkynes ≡C-H stretch C≡C stretch	3310 – 3200 2250 – 2100	s m to w	
Aromatic Compounds C-H stretch C=C stretch C-H bend	3100 – 3000 1625 – 1440 900 – 680	m to w m to w s	Hidden in fingerprint region See Table 2 for detail
Alcohols** O-H stretch	3550 – 3200	br, s	Hydrogen bonded (typical)
Amines N-H stretch	3550 – 3250	br, m	Primary (two bands) Secondary (one band)
Nitriles C≡N stretch	2280 – 2200	S	
Aldehydes C-H stretch C=O stretch	2900 – 2800 & 2800 – 2700 1740 – 1720 (sat.)	s s	H-C=O Fermi doublet
Ketones C=O stretch	1715 – 1680 (conj.) 1750 – 1705 (sat.) 1700 – 1665 (conj.)	S	
Esters** C=O stretch	1765 – 1735 (sat.) 1730 – 1715 (conj.)	S	
Carboxylic Acids** O-H stretch C=O stretch	3200 – 2500 1725 – 1700 (sat.) 1715 – 1680 (conj.)	br, m to w s	
Amides N-H stretch C=O stretch	3500 – 3150 1700 – 1630	m s	Primary (two bands) Secondary (one band)

Table 1 cont'd			
Vibration	Position (cm ⁻¹)	Intensity	Notes
Anhydrides** C=O stretch	1850 – 1800 & 1790 – 1740	S	
Acid Chlorides C=O stretch	1815 – 1770	S	
No2 stretch	1570 – 1490 & 1390 – 1300	S	
Thiols ⁱⁱ R-S-H stretch	2550 – 2600		
Alkyl & Aryl Halides [†] C-F stretch C-Cl stretch C-Br stretch C-I stretch	1000 – 1400 < 600 – 840 < 700 < 600		Hidden in fingerprint region

* Abbreviations: s = strong; m = medium; w = weak; br = broad; sat. = saturated; conj. = conjugated ** Alcohols, Esters, Carboxylic Acids, and Anhydrides also absorb in the fingerprint region due to the C-O stretch (1300 – 1000, s).

Table 2. Out-of-Plane C-H Bending Vibrations in Alkenes and Aromatics

Alkene Structure	Position (cm ⁻¹)	Phenyl Structure	Position (cm ⁻¹)
Mono-substituted	997 – 985 & 915 – 905	Mono-substituted	770 – 730 & 720 – 680
Disubstituted, <i>trans</i>	980 – 960	Disubstituted, ortho	770 – 735
Disubstituted, <i>cis</i>	730 – 665	Disubstituted, <i>meta</i>	810 – 750 & 725 – 680
Disubstituted, symm. R H R H	895 – 885	Disubstituted, <i>para</i>	860 – 800
Trisubstituted	840 – 790	R	000 - 000

ⁱ Adapted from...Mohrig, J. R.; Hammond, C. N.; Schatz, P. F. "Infrared Spectroscopy" in *Techniques in Organic Chemistry*. Freeman: New York, **2006**.

ⁱⁱ Palleros, D. R. "Infrared Spectroscopy" in *Experimental Organic Chemistry*. Wiley: New York, **2000**. p. 688.