Template -	- copy for	lab no	tebook	prep
------------	------------	--------	--------	------

Name	Partner Name
TA Name	Section Day Time

Experiment 2.1 Worksheet

Use as reference for notebook preparation – every student submits on Canvas individually after lab

Pre-Lab Requirements

- 1. Dress for lab see safety rules arrive a few minutes early
- 2. Lab Notebook: copy templates below into designated notebook
 - Purpose, scheme, and reagent table
 - **Procedure Diagrams** must be complete before you can start the lab

A. Purpose, sketch of citrus, and structures of terpenes:

B. Reagent Table

Sample Name	Amount Fill in during lab	Molecular Mass	mmoles Fill in during lab	Boiling or melting point	Density	Hazards
Citrus Peels		n/a	n/a	n/a	n/a	Enter terpene hazards:
Water						

<u>C. Procedure</u> – diagrams of key procedural segments on as many pages as needed.

- Include all labeled equipment, chemical names with amounts, and pertinent safety notes.
- Leave space to record additional notes and observations within the procedure diagrams

Step 1. Preparation of peels from home

Step 2. Distillation Apparatus – copy Figure 2 from Exp 2 PDF

- Diagram of complete distillation setup with labeled components and contents in flask
- Not necessary to show order of assembly (2)

Step 3. Separation and Collection of Citrus Oil

• Buret setup – addition of water and distillate

E. Data

Description of your peels & those of a neighboring pair (size, color, fragrance, texture, etc.):

Mass of citrus peels _____ g

Volume of water _____ mL

Distillation temperature: first drop _____ C final temperature _____ C

Mass of citrus oil _____ g Percent Recovery _____%

Calculation: % Recovery = (mass citrus oil) / (mass of peels) x 100%

F. Practice Calculations

GC chromatograms are on Canvas & in the lab for practice measuring retention times and integration.

- Show one sample calculation each for retention time, integration, and percent composition.
- Report your findings in the tables and show sample calculation below.

Table 1. Standard GC Retention times

Sample	Corrected t _R (s)
α -pinene standard	
β -pinene std.	
Limonene std.	
γ-terpinene std.	
Carvone std.*	
Citrals std.*	

* Carvone and citrals standards will not be injected in Exp 2.

Table 3. GC Analysis of Unknown Oil #4 – do this simpler one first

Peak #	Peak ID**	Corrected t _R (s)	Integration (cm ²)	% Composition
1				
2				

Table 2. GC Analysis of Citrus Oil (Unknown Oil #1)

** Use corrected retention times to assign each peak to one of the standards.

Note that not all standards may be present, some peaks overlap, and other unknown peaks may appear.

Peak #	Peak ID**	Corrected t _R (s)	Integration (cm ²)	% Composition
1				
2				
3				
4				
5				
6				