Chapter 19 Worksheet - Aldehydes \& Ketones

19A. ALDEHYDES \& KETONES - the Chapter 12 overlap with chemoselective flair!

- Draw the product of each reaction: starting material + reagent \rightarrow Product.

	Starting Material	Reagents \& translation *know this mechanism	Alternate reagents (same product)	Draw the Product Pay attention to the amount of reagent added!
1		*(a) xs $\mathrm{NaBH}_{4}, \mathrm{MeOH}$ sodium borohydride in methanol	- H_{2} with Pt, Pd, or Ni hydrogen gas with platinum, palladium, or nickel - 1. xs LiAlH_{4} 2. $\mathrm{H}_{2} \mathrm{O}$	
2		* (b) 1. $\mathrm{LiAlH}_{4}(1 \mathrm{~mol})$ 2. $\mathrm{H}_{2} \mathrm{O}$ lithium aluminum hydride followed by water	- $\mathrm{NaBH}_{4}, \mathrm{MeOH}$ - H_{2} with Pt, Pd, or Ni	
3		$\begin{aligned} & \text { (c) 1. xs } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathbf{M g B r} \\ & \text { 2. } \mathrm{H}_{2} \mathrm{O} \\ & \text { Ethyl magnesium bromide } \\ & \text { followed by water } \end{aligned}$	1. EtMgBr abbreviation 2. $\mathrm{H}_{2} \mathrm{O}$	
4		* (d) $(1 \mathrm{~mol})$ 1. 2. $\mathrm{H}_{2} \mathrm{O}$ Ortho-tolyl magnesium bromide followed by water	1. o-tol- MgBr abbreviation 2. $\mathrm{H}_{2} \mathrm{O}$	
5		(e) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\mathrm{OAC}=$ Dess-Martin Periodinane (DMP) in methylene chloride solvent	- PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ Pyridinium chlorochromate in methylene chloride solvent - 1. DMSO, $(\mathrm{COCI})_{2}$ 2. $\mathrm{Et}_{3} \mathrm{~N}$ Dimethylsulfoxide \& oxalyl chloride, then triethylamine	
6		(f) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}$ Sodium dichromate in aqueous sulfuric acid	- Chromic Acid $\left(\mathrm{H}_{2} \mathrm{CrO}_{4}\right)$ - $\mathrm{CrO}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}$	

Starting Material		Reagents \& translation *know this mechanism	Draw the Product Pay attention to the amount of reagent added!
7		${ }^{*}(\mathrm{~g}) \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}(1 \mathrm{~mol})$, \mathbf{H}^{+} 1 molar equivalent of ethanol under acidic conditions	
8		* (h) HCN (1 mol) 1 molar equivalent of hydrogen cyanide	
2		* (i) xs HCN Excess hydrogen cyanide	

19B. ACIDIC NUCLEOPHILIC ADDITION MECHANISMS

- Draw the arrow-pushing mechanism for each reaction, including all charged intermediates and product.
(8g)

(7h)

- Draw the product of each reaction: starting material + reagent \rightarrow Product.

	Starting Material	Reagents \& translation *know this mechanism	Draw the Product Pay attention to amount of reagent!
7		${ }^{*}(\mathrm{j})$ xs $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathbf{O H}, \mathrm{H}^{+}$ excess ethanol under acidic conditions	
8		* (k) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}^{+}$ 1,2-ethanediol under acidic conditions	
9		* (I) $\mathrm{H}_{2} \mathrm{NCH}_{3}, \mathrm{H}^{+}$ Methylamine with acid catalyst	
10		${ }^{*}(\mathrm{~m}) \mathrm{HN}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2}, \mathrm{H}^{+}$ Diethylamine with acid catalyst	
11		(n) $\mathbf{H}_{2} \mathbf{N N H}_{2}, \mathrm{KOH}$ Hydrazine and potassium hydroxide (basic conditions)	
12		(o) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$ Wittig reagent - methylene triphenylphosphine	
13		(o) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCH}_{2} \mathrm{Ph}$ Wittig reagent - 2-phenyl ethylene triphenylphosphine	

- Draw the arrow-pushing mechanism for each reaction, including all charged intermediates and product. (8j)

(7k)

(101)

(9m)

No printer? No problem? Copy by hand \& please put your responses on the SAME PART of the SAME PAGE as this template. Thx! 19D. Chemoselectivity with Acetal Protecting Groups - Fill in each box with the product to complete all three puzzles.

No printer? No problem? Copy by hand \& please put your responses on the SAME PART of the SAME PAGE as this template. Thx! BONUS: Mix \& Match with Reaction Bootcamp!

React each aldehyde or ketone with 1 mole of each reagent and draw the product in the box	7.	8.	1.
${ }^{*}(\mathrm{~g}) \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}^{+}$			
*(h) HCN			
* (k) $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{H}^{+}$			
* (I) $\mathrm{H}_{2} \mathrm{NCH}_{3}, \mathrm{H}^{+}$			
* (m) $\mathrm{HN}\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2}, \mathrm{H}^{+}$			
(n) $\mathrm{H}_{2} \mathrm{NNH}_{2}, \mathrm{KOH}$			
(o) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCH}_{2} \mathrm{Ph}$			

