#### <u>Chapter 20 Worksheet – Carboxylic Acids & Friends</u>

#### 20A. HYDROGEN & CARBON NUCLEOPHILES.

Draw the product of each reaction: starting material + reagent  $\rightarrow$  Product.

| Starting Material |                       | Reagents & translation *know this mechanism                                                                | Draw the Product Pay attention to the amount of reagent added! |
|-------------------|-----------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| 1                 | ОНО                   | *(a) xs NaBH <sub>4</sub> , MeOH sodium borohydride in methanol                                            | r dy ditorition to the dimodrit of reagonit added.             |
| 2                 | OCI                   | * (b) 1. xs LiAlH₄ 2. H₂O  lithium aluminum hydride followed by water                                      |                                                                |
| 3                 |                       | * (c) 1. xs CH <sub>3</sub> MgBr<br>2. H <sub>2</sub> O<br>Ethyl magnesium bromide<br>followed by water    |                                                                |
| 4                 | ∕ ∕ ∕ CN              | * (d) 1. PhMgBr (1 mol) 2. H <sub>3</sub> O <sup>+</sup> Phenyl magnesium bromide followed by aqueous acid |                                                                |
| 5                 | O C                   | * (e) Ph <sub>2</sub> CuLi (1 mol)  Gilman reagent: diphenyl organocuprate                                 |                                                                |
| 6                 | NC                    | (b) 1. xs LiAlH₄<br>2. H₂O<br>lithium aluminum hydride<br>followed by water                                |                                                                |
| 7                 | O<br>NMe <sub>2</sub> | (b) 1. xs LiAlH₄ 2. H₂O  lithium aluminum hydride followed by water                                        |                                                                |

## 20A. Mechanisms – Acid Derivatives with hydrogen- and carbon-nucleophiles.

- Draw the <u>arrow-pushing mechanism</u> for each reaction, including all charged <u>intermediates and product</u>.

### (3b) Acid anhydride reduction

$$\begin{array}{c|c}
0 & 0 \\
\hline
2. H_2O
\end{array}$$

### (5c) Grignard addition to acid chloride

$$\begin{array}{c} O \\ CI \end{array} \qquad \begin{array}{c} 1. \text{ xs CH}_3\text{MgBr} \\ \hline \\ 2. \text{ H}_2\text{O} \end{array}$$

# (4d) Grignard addition to nitrile

# (2e) Gilman addition to acid chloride

# 20B. Nucleophilic Acyl Substitution – Mix & Match with Reaction Bootcamp! – required, NOT bonus

• Draw the product of each reaction: starting material + reagent → Product.

| React each friend with each reagent and draw the product in the box |                                     | *(f) O Ph OH pyridine | *(g) H₃O <sup>+</sup> | * (h)  OH  H <sup>+</sup> (acid catalyst) | *(i) xs NH₃ |
|---------------------------------------------------------------------|-------------------------------------|-----------------------|-----------------------|-------------------------------------------|-------------|
| 2                                                                   | o c                                 |                       |                       |                                           |             |
| 3                                                                   |                                     | No Reaction           |                       |                                           | No Reaction |
| 8                                                                   | ОН                                  | No Reaction           | No Reaction           |                                           | No Reaction |
| 9                                                                   | H <sub>3</sub> CO H <sub>3</sub> CO | No Reaction           |                       |                                           |             |
| 7                                                                   | O<br>NMe <sub>2</sub>               | No Reaction           |                       |                                           | No Reaction |
| 4                                                                   | ∕ ∕ CN                              | No Reaction           |                       | No Reaction                               | No Reaction |

## 20B. Nucleophilic Acyl Substitution Mechanisms

- Draw the <u>arrow-pushing mechanism</u> for each reaction, including all charged <u>intermediates and product</u>.

### (2i) Aminolysis of acid chloride

### (3g) Hydrolysis of acid anhydride

## (8h) Fischer esterification - alcohololysis of carboxylic acid

$$\bigcirc O \qquad \bigcirc O$$

# (4g) Hydrolysis of nitrile

#### 20C. Miscellaneous Reactions that didn't fit nicely into tables

- Fill in the box: Draw the <u>product of each reaction</u>: **starting material + reagent → Product**.
- Mechanisms are helpful, but are not required here (probably not enough space anyway).

#### 10. Grignard formation and addition to carbon dioxide



#### 11. Addition of thionyl chloride to carboxylic acid

### 12. Addition of thionyl chloride to amide – corrected / updated on 2/18

#### 13. Partial reduction of an ester with DIBAH (diisobutyl aluminum hydride)

$$OCH_3 \qquad 1. DIBAH \\ \hline 2. H_2O$$

### **BONUS** – optional, extra credit

- 1. Make up a molecule that includes a carboxylic acid and all of its friends!
  - a. Acid chloride
  - b. Acid anhydride
  - c. Carboxylic acid
  - d. Ester
  - e. Amide
  - f. Nitrile
- 2. Add decorations to make your molecule look like an animal, creature, or something else that's fun