Chapter 20 Worksheet – Carboxylic Acids & Friends

20A. HYDROGEN & CARBON NUCLEOPHILES.

Draw the <u>product of each reaction</u>: **starting material + reagent → Product**.

	THE PROGRAM OF GRANT	eaction. Starting material · reagent / Froduct.		
Starting Material		Reagents & translation *know this mechanism	Draw the Product Pay attention to the amount of reagent added!	
1	ОН	*(a) xs NaBH ₄ , MeOH sodium borohydride in methanol	OH	
2	O CI	* (b) 1. xs LiAlH₄ 2. H₂O lithium aluminum hydride followed by water	OH Ph OH	
3		* (c) 1. xs CH ₃ MgBr 2. H ₂ O Ethyl magnesium bromide followed by water	CH3 < Same >	
4	∕^^CN	* (d) 1. PhMgBr (1 mol) 2. H ₃ O ⁺ Phenyl magnesium bromide followed by aqueous acid	Ph Same 2	
5	CI	* (e) Ph ₂ CuLi (1 mol) Gilman reagent: diphenyl organocuprate	Ph Same 2 O	
6	NC	(b) 1. xs LiAlH₄ 2. H₂O lithium aluminum hydride followed by water	H ₂ N Ph = Same 1	
7	O NMe ₂	(b) 1. xs LiAlH₄ 2. H₂O lithium aluminum hydride followed by water	NMe2 CH3 Same 2 CH3	

20A. Mechanisms – Acid Derivatives with hydrogen- and carbon-nucleophiles.

Draw the arrow-pushing mechanism for each reaction, including all charged intermediates and product.

(3b) Acid anhydride reduction

20B. Nucleophilic Acyl Substitution – Mix & Match with Reaction Bootcamp! – required, NOT bonus

• Draw the <u>product of each reaction</u>: **starting material + reagent** → **Product**.

React each friend with each reagent and draw the product in the box		*(f) O Ph OH pyridine	*(g) H ₃ O ⁺	* (h) OH H (acid catalyst)	*(i) xs NH₃
2	CI	h o d ph	Ph OH	Ph of	Ph NH2
3		No Reaction	V OH	Hol	No Reaction
8	ОН	No Reaction	No Reaction	700	No Reaction
9	H ₃ CO	No Reaction	HOHO	101	HN H
7	O NMe ₂	No Reaction	ОН	000	No Reaction
4	∕ CN	No Reaction	OH OH	No Reaction	No Reaction

20B. Nucleophilic Acyl Substitution Mechanisms

- Draw the arrow-pushing mechanism for each reaction, including all charged intermediates and product.

(2i) Aminolysis of acid chloride

20C. Miscellaneous Reactions that didn't fit nicely into tables

- Fill in the box: Draw the product of each reaction: starting material + reagent → Product.
- Mechanisms are helpful, but are not required here (probably not enough space anyway).

10. Grignard formation and addition to carbon dioxide

Br
$$MgBr$$
 CO_2 CO_2 H_3O^+ OH CO_2 $Car boxylate$

11. Addition of thionyl chloride to carboxylic acid

$$CO_2H$$
 $SOCI_2$ $COCI$

12. Addition of thionyl chloride to nitrile

13. Partial reduction of an ester with DIBAH (diisobutyl aluminum hydride)

BONUS - optional, extra credit

- 1. Make up a molecule that includes a carboxylic acid and all of its friends!
 - a. Acid chloride
 - b. Acid anhydride
 - c. Carboxylic acid
 - d. Ester
 - e. Amide
 - f. Nitrile
- 2. Add decorations to make your molecule look like an animal, creature, or something else that's fun 😊

