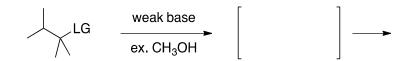
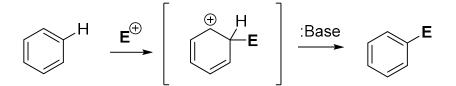
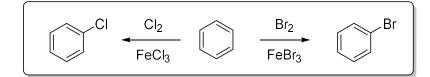

Chapter 18, Klein 3rd ed.


18.1 Electrophilic Aromatic	18.2 Halogenation	18.3 Sulfonation
Substitution Intro (EArS)	_	
18.4 Nitration	18.5 Friedel-Crafts Alkylation	18.6 Friedel-Crafts Acylation
18.7 Activating Groups	18.8 Deactivating Groups	18.9 Halogens: the Exception
18.10 EArS Directors	18.11 Multiple Substituents	18.12 Synthesis Strategies

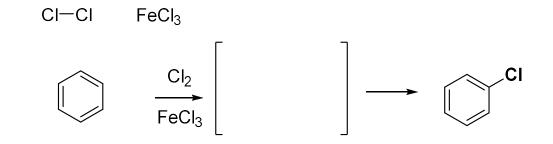
Reaction Mechanisms from 8A...


Chapter 8 – Electrophilic Addition to Alkenes

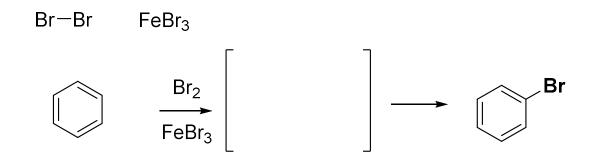
<u>Chapter 6 – E1 = unimolecular elimination</u>

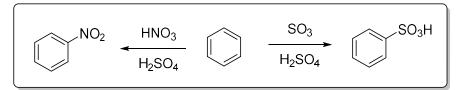


[18.1] Electrophilic Aromatic Substitution (EArS) of Benzene



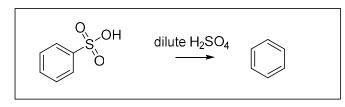
Reaction Type	"E" source + catalyst ───►	E [⊕] + Base
Chlorination	Cl_2 + $FeCl_3$ —	⊕ ⊖ CI + FeCl₄
Bromination	$Br_2 + FeBr_3 \longrightarrow$	⊕ ⊖ Br + FeBr₄
Nitration	$HNO_3 + H_2SO_4 \longrightarrow$	⁽⁺⁾ NO ₂ + H ₂ O
Sulfonation	$SO_3 + H_2SO_4 \longrightarrow$	SO ₃ H + H ₂ O
Alkylation	RCI + AICI ₃ \longrightarrow	R [⊕] + [⊖] AlCl ₄
Acylation	$CI \xrightarrow{O} R$ + AICI ₃ \longrightarrow	O ⊕


[18.2] Electrophilic Aromatic Substitution (EArS): Halogenation

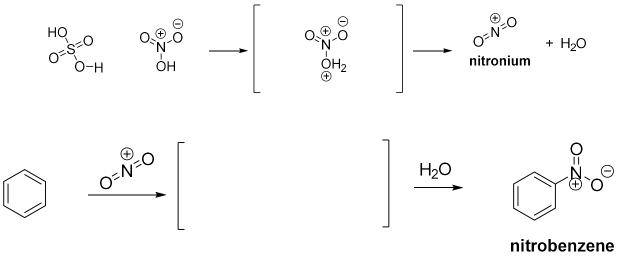

Chlorination mechanism

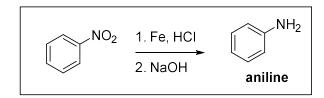
Bromination Mechanism

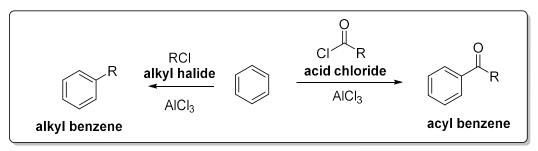
Electrophilic Aromatic Substitution (EArS): Addition of Heteroatoms (N & S)



[18.3] Sulfonation with "Fuming" Sulfuric Acid (SO₃, H₂SO₄)

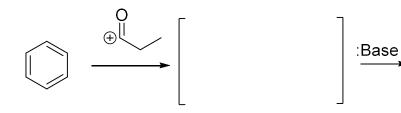

Mechanism

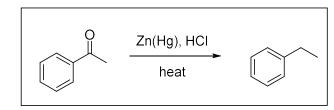

Reversible reaction with dilute acid...

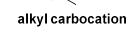

[18.4] Nitration with Nitric Acid in Sulfuric Acid (HNO₃, H₂SO₄)

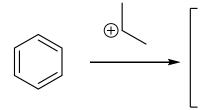
Reduction reaction...

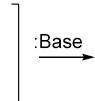



Friedel-Crafts (FC) Reactions (Rxns) ***How to Add C's to Benzene***

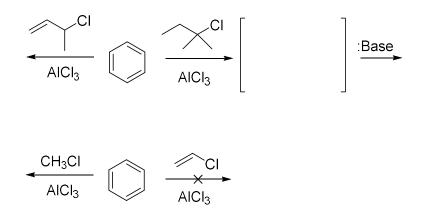

[18.6] FC Acylation Mechanism

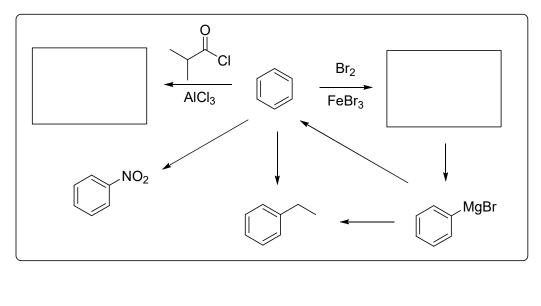



Aryl ketone reduction...

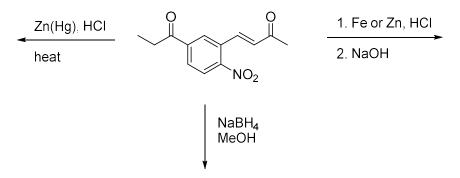


[18.5] FC Alkylation



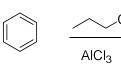


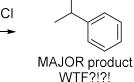
Simple FC Alkylations without carbocation rearrangements (RRGT)



Monosubstitution with EArS Reaction Puzzle / Summary

fill in the boxes and add missing reagents over blank arrows


Chemoselectivity Puzzle

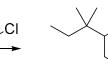


Carbocation Rearrangements (C⁺ RRGTs) in FC Alkylations

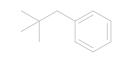
- Is there a more substituted carbon next to the alkyl halide?
 - NO: substitution happens without rearrangement 😊
 - YES: Alkyl C⁺ rearranges to more substituted C before adding to the ring

Hydride Shift

(basically not formed)

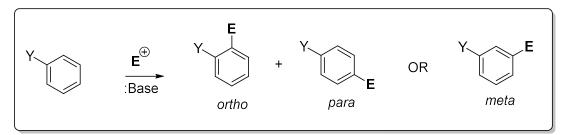

How to handle this...

- 1. Deep breath / Don't panic!
- 2. Start the mechanism as usual


3. Draw C⁺ leading to major product (work backwards)

Alkyl Shift ... when a quaternary C is next-door

AICI₃

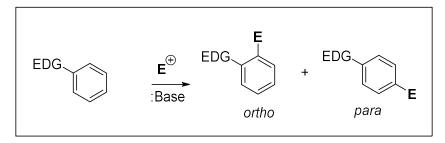


MAJOR product S'rsly WTF?!?!

minor product (basically not formed)

[18.7-18.10] EArS Substituent Effects

How do these groups effect the rates and substitution pattern in a 2nd EArS rxn?

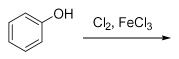

- 1. Activators make certain positions on the ring more nucleophilic
- 2. C⁺ intermediate more stabilized in certain positions relative to EWG or EDG

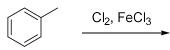
EWG = electron withdrawing group **EDG** = electron donating group

Substituent Effects on EArS Reactions

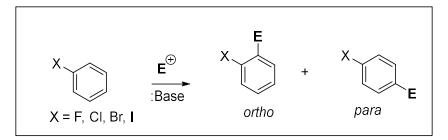
ortho/para activators	ortho/para deactivator	meta-deactivators
- EDG's - strong by resonance - weak by EN <i>Ex. OH, NH₂, R groups</i>	- Halides only - weak EWG	- EWG's (not X) - strong by resonance - weak by EN <i>Ex. NO</i> ₂ , <i>SO</i> ₃ <i>H</i> , <i>C</i> (<i>O</i>) <i>R</i>

EDG's are Ortho / Para Activators

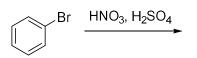

Strong EDG (Resonance)

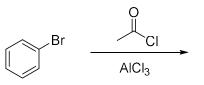

- Atom attached to ring has lp

Weak EDG (inductive effect)

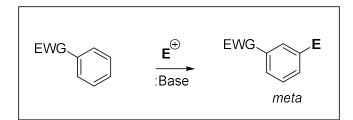

- Alkyl groups

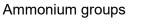
phenol


Halides are Ortho / Para Deactivators

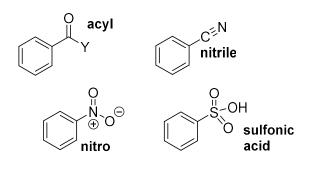


EWG (Electronegativity, EN) = deactivator

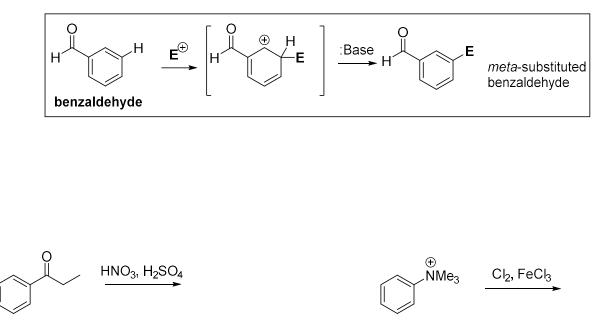

* EDG (Resonance) = ortho / para directors


EWG's are Meta-Deactivators

StrongEWG (Resonance)


Weak EWG (Induction)

carbonyl or similar group attached to ring



acetophenone

EWG's stabilize C⁺ intmd if substitution occurs meta

EArS Limitation: Friedel-Crafts reactions don't work with strong EWG(s) on the ring

EDG's are great!

Can have 1 halide (weak deactivator) on the ring

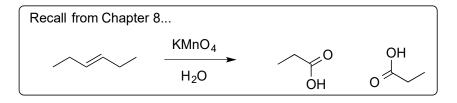
No Reaction (NR) with 2+ halides or other EWG

Trisubstituted Benzenes

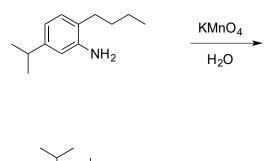
Strong o/p act	weak o/p act	weak o/p deact	weak m-deact	strong m-deact
- OH	-CH ₃	-Cl	-⁺NR₃	-NO ₂

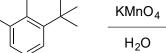
EArS on Disubstituted Benzene:

Position of 3rd substituent dictated by the strongest activator (or weakest deactivator)

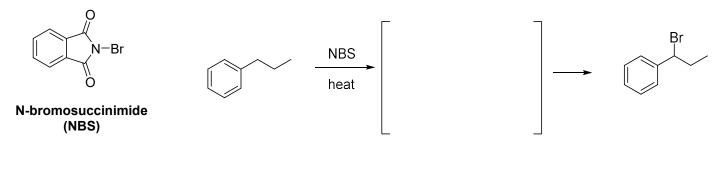

$$\begin{array}{c}
\mathsf{NO}_2\\
\mathsf{Br}
\end{array}
\xrightarrow{\mathsf{SO}_3\\
\mathsf{H}_2\mathsf{SO}_4}
\end{array}$$

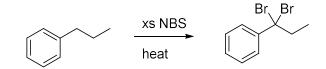
Chapter 18 Review of Reactions


Chapter 17 Review (?): REACTIONS AT THE BENZYLIC POSITION

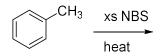

Oxidative Cleavage of Alkyl Benzenes

Oxidative Cleavage cont'd

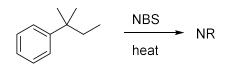



CI

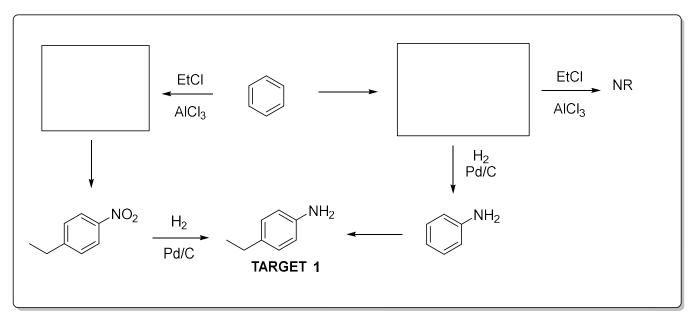
2. Benzylic Bromination

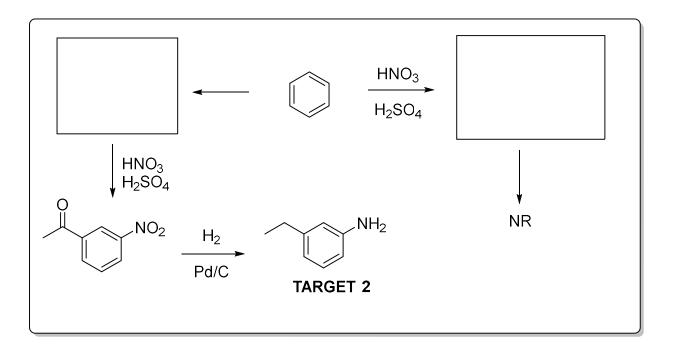

Da brominator:

What if there's an excess of NBS?

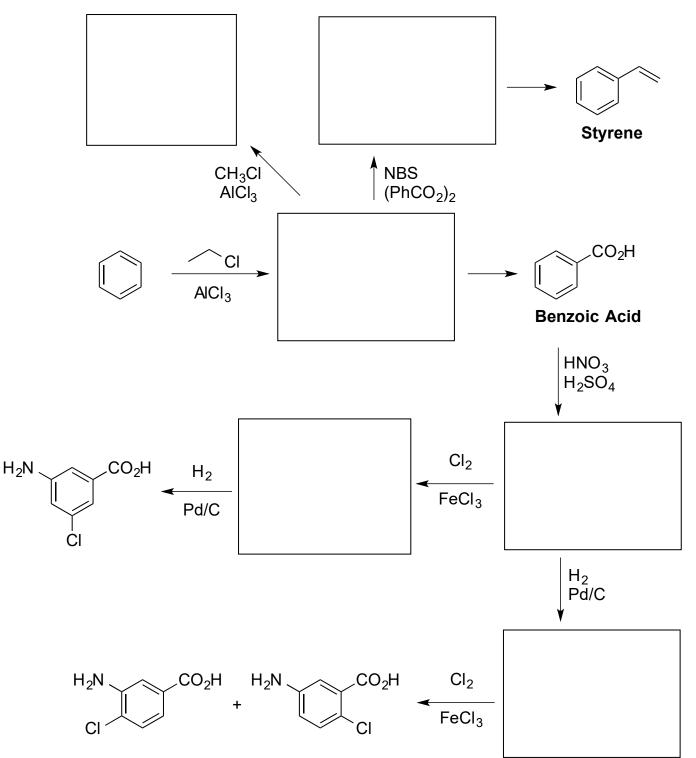


What about toluene?





Limitation: benzylic H's are required


Reaction Puzzles: Disubstitution with EArS

POLYSUBSTITUTED BENZENES...Strategery!

Chapter 18 Mega-Puzzle

