Name	Partner		
TA Name	Section Letter	_Day	Time

Experiment 5A Worksheet – Pseudoionone Synthesis from Citrals

Use as reference for notebook preparation – submit on Canvas this individually after lab

A. Experimental Purpose and Pseudoionone Synthesis Reaction Scheme

B. Reagent Table

Refer to the procedure for amounts and safety table for hazards; find the chemical properties on Wikipedia!

Name	Volume	Density	Mass	MW	mmol	Equiv*	Boiling / melting point	Hazards
Citrals (1:1 mixture)	-							
Acetone								
2.25 M NaOEt Sodium ethoxide in ethanol		-	-	-				
2 M HCI								
Tert-butyl methyl ether (BME)					-	-		
10% NaCl _(aq)		-	-	-	-	-		
pseuodionones (crude product)	-	-				-		

* Equiv = molar equivalents of reaction components with respect to the limiting reagent (citrals)

- reagent equivalents: divide the mmol of reagent by the mmol of citrals

C. Procedure Diagrams - on as many pages as needed

- All labeled equipment, chemical names with amounts, transfers, cleanup & safety notes
 - Help w diagrams: Slugs@home Exp 5 website & class notes
- 1. Reaction setup all equipment and chemicals (name, structure, and amount)
- 2. Reaction workup flow chart / diagrams of separatory funnel contents of layers, all solution transfers, and rota-vap
- 3. Analysis GC and IR sample preparation; sketches of spectra, identifying key signals

D. Partner Agreement / Accountabilibuddy Contract: Both students in the pair get the same lab report grade. There is also the option to submit individual reports – please do what works best for you and your partner. Split up partner assignments in part (a) and schedule a time to collaborate after lab in part (b).

(a) Students are encouraged to work on report together during lab. The assignments below indicate who will put together or type the **final responses**.

Name	
Abstract	
In-Lab Questions	

(b) "DO" Date: _____ = when / how you'll meet or exchange work to discuss & proofread, at least 1-2 days before the DUE date

E. Data & Analysis

Mass of citrals _____ mg Theoretical yield of pseudoionones _____ mg

Theoretical Yield Calculation:

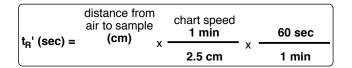
Miscellaneous notes & observations - ex. Suspected sources of product loss

Empty RBF mass ______ g After rota-vap: mass of RBF & crude product ______ g

Crude product mass (actual yield) _____g

Percent Yield = [(actual yield) / (theoretical yield)] x 100% _____% Yield, Pseudoionones

Citrals IR


Functional Group	Bond	Expected Wavenumber Range (cm ⁻¹)	Observed Wavenumber (cm ⁻ ¹)

Pseudoionones IR – draw structures

Functional Group	Bond	Expected Wavenumber Range (cm ⁻¹)	Observed Wavenumber (cm ⁻ ¹)
L			

Gas Chromatography (GC) Analysis - week 1 and/or 2

Standard Sample	Corrected t _R ['] (s)	
citrals peak 1		solvent
citrals peak 2		sample
Pseudoionone peak 1		air injection
Pseudoionone peak 2		
a-lonone		distance from air to sample (cm)
b-lonone		

Gas Chromatography (GC) – Crude Psuedoionones Product

Peak #	Peak ID**	Corrected t _R (s)	Integration (cm ²)	% Composition

** Use corrected retention times to assign each peak to one of the standards.

Note that not all standards may be present, some peaks overlap, and other unknown peaks may appear.