Name	Partner
TA Name	Section Letter Day Time

Experiment 5B Worksheet – Pseudoionone Cyclization – Ionone Synthesis

Use as reference for notebook preparation - submit on Canvas this individually after lab

A. Experimental Purpose and Ionone Synthesis Reaction Scheme

B. Reagent Table – choose one cyclization procedure to fill out this table

Refer to the procedure for amounts and safety table for hazards; find the chemical properties on Wikipedia!

Name	Volume	Density	Mass	MW	mmol	Equiv*	Boiling / melting point	Hazards
pseuodionones (crude product)	-							
		-	-	-				
					-	-		
		-	-	-	-	-		
ionones (crude product)	-	-				-		

* **Equiv** = molar equivalents of reaction components with respect to the limiting reagent (pseudoionones)

- reagent equivalents: divide the mmol of reagent by the mmol of pseudoionones

C. Procedure Diagrams - on as many pages as needed

- All labeled equipment, chemical names with amounts, transfers, cleanup & safety notes
 - Help w diagrams: Slugs@home Exp 5 website & class notes
- 1. Reaction setup all equipment and chemicals (name, structure, and amount)
- 2. Reaction workup flow chart / diagrams of separatory funnel contents of layers, all solution transfers, and rota-vap
- 3. Analysis GC, IR, and UV-vis sample preparation; sketches of spectra, identifying key signals

D. Partner Agreement / Accountabilibuddy Contract: Both students in the pair get the same lab report grade. There is also the option to submit individual reports – please do what works best for you and your partner. Split up partner assignments in part (a) and schedule a time to collaborate after lab in part (b).

(a) *Didn't we do this last week?* Yas and it's great to check-in with your partner Students are encouraged to work on report together during lab. The assignments below indicate who will put together or type the **final responses**.

Name	
Abstract	
In-Lab Questions	

(b) "DO" Date: _____ = when / how you'll meet or exchange work to discuss & proofread, at least 1-2 days before the DUE date

E. Data & Analysis

Mass of pseudoionones _____ mg Theoretical yield of ionones _____ mg

Theoretical Yield Calculation:

Miscellaneous notes & observations - ex. Suspected sources of product loss

Empty RBF mass g		After rota-vap: mass of RBF & crude product	<u>g</u>
------------------	--	---	----------

Crude product mass (actual yield) _____g

Percent Yield = [(actual yield) / (theoretical yield)] x 100% _____% yield, ionones

GC Analysis of Product Mixture – Ionones

Peak #	Peak ID**	Corrected t _R (s)	Integration (cm ²)	% Composition

(sec) -	distance from air to sample (cm)	chart speed 1 min		60 sec
(300) -	· / X	2.5 cm	х -	1 min

FIGURE 20.13 Determining peak area: h = height; $W_{h/2}$ = width at halfheight.

Integration: Peak Area = $h \ge w_{h/2}$

Crude product mixture - ionones IR – draw structures

Functional Group	Bond	Expected Wavenumber Range (cm ⁻¹)	Observed Wavenumber (cm ⁻¹)

Pure Spectra Provided - alpha-ionone IR – draw structure

Functional Group	Bond	Expected Wavenumber Range (cm ⁻¹)	Observed Wavenumber (cm ⁻¹)

Pure Spectra Provided - beta-ionone IR - draw structure

Functional Group	Bond	Expected Wavenumber Range (cm ⁻¹)	Observed Wavenumber (cm ⁻¹)

¹ H NMR /	Analysis of β -ionone	β -ionone		
Signal	Integration (#H's)	Splitting (exp/obs)	Chemical Shift, Expected	Chemical Shift, Observed (Fig 20.3)
А	3			
В	1			
С	1			
D	N/A		·	
E	3			
F	3			
G	3			
Н	2			
Ι	2			
J	2			

Figure 23.15 500-MHz ¹H-NMR spectrum of β -ionone in CDCl₃.

¹ H NMR Analysis of α -ionone		α-ionc	one	
Signal	Integration (#H's)	Splitting (exp / obs)	Chemical Shift, Expected	Chemical Shift, Observed (Fig 20.3)
А	3			
В	1			
С	1			
D	1			
E	3			
F	3			
G	3			
Н	1			
I	2			
J	1			
J'	1			

Figure 23.12 500-MHz $^1\text{H-NMR}$ spectrum of $\alpha\text{-ionone}$ in CDCl3.