Name	Partner Name		
TA Name	Section Letter	_ Day	_ Time

Experiment 6 Worksheet – Diels-Alder [4+2] Cycloaddition Reaction in Water Use as reference for notebook preparation – submit on Canvas this individually after lab

A. Experimental Purpose and Cycloaddition Reaction Scheme

B. Reagent Table

Refer to the procedure for amounts and safety table for hazards; find the chemical properties on Wikipedia!

Name	Volume	Density	Mass	MW	mmol	Equiv*	Boiling / melting point	Hazards
9- anthracenemethanol	-	-						
<i>N</i> -ethylmaleimide (NEM)	-	-						
Water								
Cycloaddition Product						-		
Toluene						-		
Diethyl ether					-	-		

- * Equiv = molar equivalents of reaction components with respect to the limiting reagent
- reagent equivalents: divide the mmol of reagent by the mmol of citrals
- solvent: divide the mmol of limiting reagent by the volume of water (mL)

<u>C. Procedure Diagrams</u> - on as many pages as needed

- All labeled equipment, chemical names with amounts, transfers, cleanup & safety notes
 - Help w diagrams: Slugs@home Exp 6 website & class notes
- 1. Reaction setup all equipment and chemicals (name, structure, and amount)
- 2. Reaction workup flow chart / diagrams with all containers labeled and all solution transfers shown
- 3. Recrystallization all equipment involved, preparation and solution transfers
- 4. Analysis NMR, IR, and UV-vis sample preparation; sketches of spectra, identifying key signals

D. Partner Agreement / Accountabilibuddy Contract: Both students in the pair get the same lab report grade. There is also the option to submit individual reports – please do what works best for you and your partner. Split up partner assignments in part (a) and schedule a time to collaborate after lab in part (b).

(a) Students are encouraged to work on report together during lab. The assignments below indicate who will put together or type the **final responses**.

Name	
Abstract	
In-Lab Questions	

(b) "DO" Date: _____ = when / how you'll meet or exchange work to discuss & proofread, at least 1-2 days before the DUE date

E. Data & Analysis

Mass of 9-anthracenemethanol _____ mg Theoretical yield of adduct _____ mg

Theoretical Yield Calculation:

Miscellaneous notes & observations - ex. Suspected sources of product loss

 Empty RBF mass ______g
 After rota-vap: mass of RBF & crude product ______g

Crude product mass (actual yield) _____g

Percent Yield = [(actual yield) / (theoretical yield)] x 100% _____% Yield of Adduct

9-anthracenemethanol IR

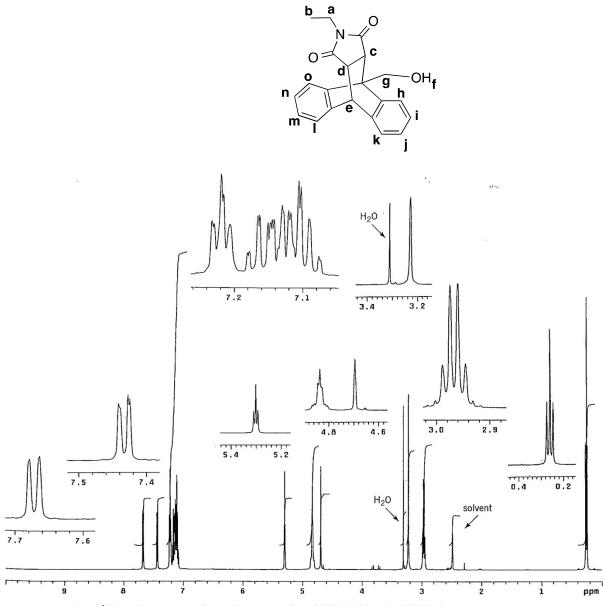
Bond	Expected Wavenumber Range (cm ⁻¹)	Observed Wavenumber (cm ⁻¹)
	Bond	Bond Expected Wavenumber Range (cm ⁻¹)

NEM IR

Functional Group	Bond	Expected Wavenumber Range (cm ⁻¹)	Observed Wavenumber (cm ⁻¹)

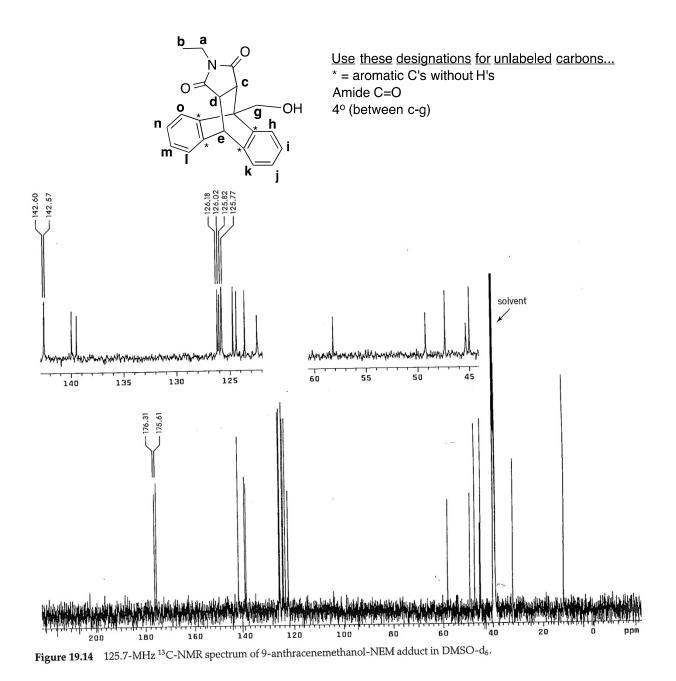
Product IR

Functional Group	Bond	Expected Wavenumber Range (cm ⁻¹)	Observed Wavenumber (cm ⁻¹)


<u>UV-vis Data</u>

9-anthracenemethanol

Expected λ_{max}	Observed λ	Absorbance	


Product

Expected λ_{max}	Observed λ	Absorbance	

ure 19.13 500-MHz ¹H-NMR spectrum of 9-anthracenemethanol-NEM adduct in DMSO-d₆.

Signal (a-o)	Integration	Splitting	Expected	Observed
• • •			Chemical Shift	Chemical Shift
				0.4
				3.0
				3.2
				4.7
				4.8
				5.3
	5H (overlap)			7.1
				7.2
				7.4
				7.7

Signal	Observed Shift (ppm)	Expected Shift
	10	
	32	
	46	
	45 & 47	
	50	
	57	
	123-125 (4 signals)	
	125-126 (4 signals)	
	139-142 (4 signals)	
	175 & 176	