CHEM 110L, Lecture 8 Experiment 4 - Biodiesel Synthesis & ¹H NMR Analysis

Scheme 1. Synthesis of biodiesel from corn oil via "transesterification."

What vegetable oil will you 'bring to lab' this week?

Draw the structure of its major triglyceride component.

Source		Saturated f	Unsaturated fatty acids (%)			
	C ₁₂ lauric	C ₁₄ myristic	C ₁₆ palmitic	C ₁₈ stearic	C ₁₈ oleic	C ₁₈ linoleic
Animal fat						
Lard	_	1	25	15	50	6
Butter	2	10	25	10	25	5
Human fat	1	3	25	8	46	10
Whale blubber	_	8	12	3	35	10
Vegetable oil						
Coconut	50	18	8	2	6	1
Corn	_	1	10	4	35	45
Olive	_	1	5	5	80	7
Peanut	_	_	7	5	60	20

Table 27.1 Structures of Some Common Fatty Acids

Name	No. of carbons	Melting point (°C)	Structure
Saturated			
Lauric	12	43.2	CH ₃ (CH ₂) ₁₀ CO ₂ H
Myristic	14	53.9	CH ₃ (CH ₂) ₁₂ CO ₂ H
Palmitic	16	63.1	CH ₃ (CH ₂) ₁₄ CO ₂ H
Stearic	18	68.8	CH ₃ (CH ₂) ₁₆ CO ₂ H
Arachidic	20	76.5	CH ₃ (CH ₂) ₁₈ CO ₂ H
Unsaturated			
Palmitoleic	16	-0.1	(Z)-CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ CO ₂ H
Oleic	18	13.4	(Z)-CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ CO ₂ H
Linoleic	18	-12	(Z,Z)-CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ CO ₂ H
Linolenic	18	-11	(all Z)-CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ CO ₂ H
Arachidonic	20	-49.5	$(all\ Z)-CH_3(CH_2)_4(CH{=}CHCH_2)_4CH_2CH_2CO_2H$

Draw **diagrams / comic strip** of the **Part A** procedure (making sodium methoxide). What are the **safety concerns** and how will you **prevent chemical exposure** accidents?

Draw the reaction and mechanism for Part A.

Draw diagrams / comic strip of what you'll be doing in Parts B & C. Highlight the safety concerns and preventative measures.

Draw the **reaction** and **mechanism** for the first cycle of **Part B** (one mole of methoxide performs one *trans*esterification reaction - nucleophilic acyl substitution). Draw your biodiesel product from oil-of-choice to incorporate the major fatty acids present.

What ¹H NMR peaks should stand out in the spectrum of your biodiesel product?