Name	me Partner Name			
TA Name	Section Letter	Day	Time	

Experiment 5 Worksheet – Biodiesel Synthesis Each student submits this individually

I. Partner Agreement: Both students in the pair get the same lab report grade. Split up partner assignments in part (a) and schedule a time to collaborate after lab in part (b).

(a) Students are encouraged to work on report together during lab. The assignments below indicate who will put together or type the final responses.

Name	
In-Lab Questions	
Experimental Methods	

(b) "DO" Date: = when / how you'll meet or exchange work to discuss & proofread, at least 1-2 days before the DUE date

II. Data & Analysis

Type of vegetable oil _____

TA Name _____

Volume of oil _____ mL

Molecular weight of triglyceride	g/mL	millimoles of oil	mmol
----------------------------------	------	-------------------	------

Draw the structure of the triglyceride in your veg-oil-of-choice using the major fatty acid component(s).

Theoretical Yield Calculation:

Exp 5, II. Data & Analysis

Product Loss: list the amount and specific reason for the loss

Observations

Vegetable oil	Methanol and methoxide solution	Biodiesel	Glycerol

Yield of biodiesel = (theoretical yield) – (product loss) = _____ mg

* Note: This yield calculation is for the remote lab only. In-person, one would eyeball the volumes in test tubes.

_____% Yield of Adduct

Percent Yield = [(actual yield) / (theoretical yield)] x 100%

¹H NMR of biodiesel made from _____ oil (draw structure with labels)

Signal	Integration (#H's)	Splitting	Chemical Shift Expected (ppm)	Chemical Shift Observed (ppm) Range is ok in alkyl region

Experiment 5 Notebook Pages

Start before lab, work on it during, turn in with the worksheet

- Purpose: Reaction scheme starting material, reagents, product
- *Reagent table:* List the amounts (mg or mL and mmol), molar equivalents ("equiv."), and physical properties (MW, bp or mp, density, one-word hazard) of each chemical in the reaction scheme.
- *Procedure* (remote) hand-drawn 'comic strip' with diagrams of all equipment and chemicals with amounts. Include pertinent notes from the Clean-up & Safety Table.
- 1. Reaction setup all equipment and chemicals (name, structure, and amount)
- 2. Reaction workup flow chart / diagrams of solution transfers and test tube contents
- **3.** Analysis NMR sample prep and rough sketch of ¹H NMR spectrum, identifying key signals